Topic Course on Probabilistic Methods
(Week 3) Alterations

Linyuan Lu

University of South Carolina
Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)
Subtopics

Alteration

- Ramsey number $R(r, r)$
- Combinatorial geometry
- Ramsey number $R(k, r)$
- Property B problem revisited
Suppose that the “random” structure does not have all desired properties but many have a few “blemishes”. With a small alteration we remove the blemishes, giving the desired structures.
Ramsey number $R(r, r)$

Theorem: $R(r, r) > (1 + o(1)) \frac{1}{e} r 2^{r/2}$.
Theorem: \(R(r, r) > (1 + o(1)) \frac{1}{e} r 2^{r/2}. \)

Proof: Color the edges of \(K_n \) in two colors with equal probability randomly and independently. Let \(X \) be the number of monochromatic \(K_r \). Then

\[
E(X) = \binom{n}{r} 2^{1-\binom{r}{2}}.
\]
Ramsey number $R(r, r)$

Theorem: $R(r, r) > (1 + o(1))\frac{1}{e}r2^{r/2}$.

Proof: Color the edges of K_n in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_r. Then

$$E(X) = \binom{n}{r}2^{1-(\frac{r}{2})}.$$

If $X < \frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_r. Thus, $R(r, r) > \frac{n}{2}$.
Ramsey number $R(r, r)$

Theorem: $R(r, r) > (1 + o(1)) \frac{1}{e} r 2^{r/2}$.

Proof: Color the edges of K_n in two colors with equal probability randomly and independently. Let X be the number of monochromatic K_r. Then

$$E(X) = \binom{n}{r} 2^{1-(\frac{r}{2})}.$$

If $X < \frac{n}{2}$, then we can delete at most $\frac{n}{2}$ to destroy all monochromatic K_r. Thus, $R(r, r) > \frac{n}{2}$.

This gives $R(r, r) > (1 + o(1)) \frac{1}{e} r 2^{r/2}$. □
Combinatorial geometry

- S: a set of n points in the unit square $[0, 1]^2$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S) = \Omega\left(\frac{\log n}{n^2}\right)$.
Combinatorial geometry

- S: a set of n points in the unit square $[0, 1]^2$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S) = \Omega\left(\frac{\log n}{n^2}\right)$.

Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100n^2}$.
Combinatorial geometry

- S: a set of n points in the unit square $[0, 1]^2$.
- $T(S)$: the minimum area of a triangle whose vertices are three distinct points of S.

Komlós, Pintz, Szemerédi (1982): There exists a set S of n points in the unit square such that $T(S) = \Omega(\frac{\log n}{n^2})$.

Here we prove a weak result: $\exists S$ such that $T(S) \geq \frac{1}{100n^2}$.

Proof: Select $2n$ random points uniformly and independently from $[0, 1]^2$.

- P, Q, R: three random points.
- $\mu := \Delta PQR$: the area of PQR.
Proof

\[\Pr(x \leq |PQ| \leq x + \Delta x) \leq \pi(x + \Delta x)^2 - \pi x^2 \approx 2\pi x \Delta x. \]

If \(\mu \leq \epsilon \), then \(R \) is in the region of a rectangle of width \(\frac{4\epsilon}{x} \) and length at most \(\sqrt{2} \).
Proof

\[\Pr(x \leq |PQ| \leq x + \Delta x) \leq \pi (x + \Delta x)^2 - \pi x^2 \approx 2\pi x \Delta x. \]

If \(\mu \leq \epsilon \), then \(R \) is in the region of a rectangle of width \(\frac{4\epsilon}{x} \) and length at most \(\sqrt{2} \).

\[\Pr(\mu \leq \epsilon) \leq \int_0^{\sqrt{2}} (2\pi x) \left(\frac{4\sqrt{2}\epsilon}{x} \right) dx = 16\pi \epsilon. \]
Proof

\[\Pr(x \leq |PQ| \leq x + \Delta x) \leq \pi(x + \Delta x)^2 - \pi x^2 \approx 2\pi x \Delta x. \]

If \(\mu \leq \epsilon \), then \(R \) is in the region of a rectangle of width \(\frac{4\epsilon}{x} \) and length at most \(\sqrt{2} \).

\[\Pr(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}} (2\pi x) \left(\frac{4\sqrt{2}\epsilon}{x} \right) dx = 16\pi \epsilon. \]

Let \(X \) be the number of triangles with areas < \(\frac{1}{100n^2} \).

\[\mathbb{E}(X) \leq \binom{2n}{3} \frac{16\pi}{100n^2} < n. \]
Proof

$$\Pr(x \leq |PQ| \leq x + \Delta x) \leq \pi (x + \Delta x)^2 - \pi x^2 \approx 2\pi x \Delta x.$$

If $\mu \leq \epsilon$, then R is in the region of a rectangle of width $\frac{4\epsilon}{x}$ and length at most $\sqrt{2}$.

$$\Pr(\mu \leq \epsilon) \leq \int_{0}^{\sqrt{2}} (2\pi x) \left(\frac{4\sqrt{2}\epsilon}{x} \right) dx = 16\pi \epsilon.$$

Let X be the number of triangles with areas $< \frac{1}{100n^2}$.

$$E(X) \leq \left(\frac{2n}{3} \right) \frac{16\pi}{100n^2} < n.$$

Delete one vertex from each small triangle and leave at least n vertices. Now no triangle has area less that $\frac{1}{100n^2}$. □
Theorem: For any $0 < p < 1$, we have

$$R(k, t) > n - \binom{n}{k} p^{\binom{k}{2}} - \binom{n}{t} (1 - p)^{\binom{t}{2}}.$$
Ramsey number \(R(k, t) \)

Theorem: For any \(0 < p < 1 \), we have

\[
R(k, t) > n - \binom{n}{k} p^{\binom{k}{2}} - \binom{n}{t} (1 - p)^{\binom{t}{2}}.
\]

Proof: Color each edge independently in red or blue; the probability of being red is \(p \) while the probability of being blue is \(1 - p \). Let \(X \) be the number of red \(K_k \) and \(Y \) be the number of blue \(K_t \).

\[
E(X) = \binom{n}{k} p^{\binom{k}{2}}
\]

\[
E(Y) = \binom{n}{t} (1 - p)^{\binom{t}{2}}.
\]
Ramsey number \(R(3, t) \)

For \(k = 3 \), this alteration method gives \(R(3, t) \geq \left(\frac{t}{\ln t} \right)^{3/2} \).
For $k = 3$, this alteration method gives $R(3, t) \geq \left(\frac{t}{\ln t} \right)^{3/2}$.

The Lovasz Local Lemma gives $R(3, t) \geq \left(\frac{t}{\ln t} \right)^2$.
For \(k = 3 \), this alteration method gives \(R(3, t) \geq \left(\frac{t}{\ln t} \right)^{3/2} \).

The Lovasz Local Lemma gives \(R(3, t) \geq \left(\frac{t}{\ln t} \right)^2 \).

\[
\frac{ct^2}{\ln t} \leq R(3, t) \leq (1 + o(1)) \frac{t^2}{\ln t}.
\]
Ramsey number $R(3, t)$

For $k = 3$, this alteration method gives $R(3, t) \geq \left(\frac{t}{\ln t} \right)^{3/2}$.

The Lovasz Local Lemma gives $R(3, t) \geq \left(\frac{t}{\ln t} \right)^2$.

$$\frac{ct^2}{\ln t} \leq R(3, t) \leq (1 + o(1)) \frac{t^2}{\ln t}.$$

Before Shearer’s result, **Ajtai-Komlós and Szemerédi (1980)** proved $R(3, t) \leq \frac{c't^2}{\ln t}$.
Property B problem revisited:
Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.
Property B problem revisited: Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$m(r) \geq \Omega \left(\left(\frac{r}{\ln r} \right)^{1/2} 2^r \right).$$
Property B problem revisited:
Let $m(r)$ denote the minimum possible number of edges of an r-uniform hypergraph that does not have property B.

Theorem [Radhakrishnan-Srinivasan 2000]:

$$m(r) \geq \Omega \left(\left(\frac{r}{\ln r} \right)^{1/2} 2^r \right).$$

Proof: For a fixed r-uniform hypergraph $H = (V, E)$ with $|E| = k2^{r-1}$. Let $p \in [0, 1]$ satisfying $k(1 - p)^r + k^2p < 1$.
Here is a two-round coloring process.

- **First round**: Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected k monochromatic edges. Let U be the set of vertices in some monochromatic edges.
Here is a two-round coloring process.

- **First round:** Color each vertex independently in red or blue with equal probability. It ends with a coloring with expected \(k \) monochromatic edges. Let \(U \) be the set of vertices in some monochromatic edges.

- **Second round:** Consider vertices in \(U \) sequentially in the (random) order of \(V \). A vertex \(u \in U \) is **still dangerous** if there is some monochromatic edge in the first coloring and for which no vertex has yet changed color.
 - If \(u \) is not dangerous, do nothing.
 - If \(u \) is still dangerous; with probability \(p \), flip the color of \(u \).
Claim: The algorithm fails with probability at most $k(1 - p)^r + k^2p$.
Claim: The algorithm fails with probability at most
\[k(1 - p)^r + k^2 p. \]

Bad events: An edge \(e \) is red in the final coloring if

- \(e \) was red in the first coloring and remained red through the final coloring; call this event \(A_e \).
Claim: The algorithm fails with probability at most $k(1 - p)^r + k^2 p$.

Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_e.
- e was not red in the first coloring but was red in the final coloring; call this event C_e.
Claim: The algorithm fails with probability at most $k(1 - p)^r + k^2 p$.

Bad events: An edge e is red in the final coloring if

- e was red in the first coloring and remained red through the final coloring; call this event A_e.
- e was not red in the first coloring but was red in the final coloring; call this event C_e.

$$\Pr(A_e) = 2^{-r}(1 - p)^r.$$
Claim: The algorithm fails with probability at most $k(1 - p)^r + k^2p$.

Bad events: An edge e is red in the final coloring if
- e was red in the first coloring and remained red through the final coloring; call this event A_e.
- e was not red in the first coloring but was red in the final coloring; call this event C_e.

\[
\Pr(A_e) = 2^{-r}(1 - p)^r.
\]
\[
2 \sum_{e \in E(H)} \Pr(A_e) = k(1 - p)^r.
\]
For two edge e, f, we say e *blames* f if

- $e \cap f = \{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.
For two edge e, f, we say e **blames** f if

- $e \cap f = \{v\}$ for some v.
- In the first coloring f was blue and in the final coloring e was red.
- v was the last vertex of e that changed color from blue to red.
- When v changed its color f was still entire blue.

Call this event B_{ef}. Then

$$\sum_e \Pr(C_e) \leq \sum_{e \neq f} \Pr(B_{ef}).$$
Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.
Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

- $i = i(\sigma)$: the number of $v' \in e$ coming before v.
- $j = j(\sigma)$: the number of $v' \in f$ coming before v.
Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

- $i = i(\sigma) :$ the number of $v' \in e$ coming before v.
- $j = j(\sigma) :$ the number of $v' \in f$ coming before v.

\[
\Pr(B_{ef} \mid \sigma) \leq \frac{p}{2} 2^{-r+1} (1 - p)^j 2^{-r+1+i} \left(\frac{1 + p}{2}\right)^i.
\]
Let e, f with $e \cap f = \{v\}$ be fixed. The random ordering of V induced a random ordering σ on $e \cup f$.

- $i = i(\sigma)$: the number of $v' \in e$ coming before v.
- $j = j(\sigma)$: the number of $v' \in f$ coming before v.

\[
\Pr(B_{ef} \mid \sigma) \leq \frac{p}{2} 2^{-r+1} (1 - p)^{j} 2^{-r+1+i} \left(\frac{1 + p}{2}\right)^{i}.
\]

We have

\[
\Pr(B_{ef}) \leq 2^{1-2r} p E[(1 + p)^{i} (1 - p)^{j}].
\]
\[
\leq 2^{1-2r} p.
\]
The failure probability is at most

\[2 \sum_{e \in E(H)} (\Pr(A_e) + \Pr(C_e)) \leq k(1 - p)^r + k^2 p < ke^{-pr} + k^2 p. \]
The failure probability is at most

\[2 \sum_{e \in E(H)} (\Pr(A_e) + \Pr(C_e)) \leq k(1 - p)^r + k^2 p < ke^{-pr} + k^2 p. \]

The function \(f(p) = ke^{-pr} + k^2 p \) reaches its minimum at

\[p = \frac{\ln(r/k)}{r}. \]

The minimum value is less than 1 if

\[k < (1 + o(1)) \sqrt{\frac{2r}{\ln r}}. \]
Spencer modified the Radhakrishnan-Srinivasan’s proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_v \in [0, 1]$. The birth time x_v is assigned uniformly and independently.
Spencer modified the Radhakrishnan-Srinivasan’s proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_v \in [0, 1]$. The birth time x_v is assigned uniformly and independently.

\[
\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} \binom{r-1}{l} 2^{1-2r} \int_{0}^{1} x^l p^{l+1} (1 - xp)^{r-1} dx
\]
Spencer modified the Radhakrishnan-Srinivasan’s proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_v \in [0, 1]$. The birth time x_v is assigned uniformly and independently.

\[
\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} \binom{r-1}{l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1 - xp)^{r-1} dx
\]

\[
= 2^{1-2r} p \int_0^1 (1 + xp)^{r-1} (1 - xp)^{r-1} dx
\]
Spencer modified the Radhakrishnan-Srinivasan’s proof slightly. To assign a random ordering of the vertex in V, it is sufficient to assign each vertex v a birth time $x_v \in [0, 1]$. The birth time x_v is assigned uniformly and independently.

\[
\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} \binom{r-1}{l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1 - xp)^{r-1} dx
\]

\[
= 2^{1-2r} p \int_0^1 (1 + xp)^{r-1} (1 - xp)^{r-1} dx
\]

\[
\leq 2^{1-2r} p.
\]
Spencer modified the Radhakrishnan-Srinivasan’s proof slightly. To assign a random ordering of the vertex in \(V \), it is sufficient to assign each vertex \(v \) a birth time \(x_v \in [0, 1] \). The birth time \(x_v \) is assigned uniformly and independently.

\[
\Pr(B_{ef}) \leq \sum_{l=0}^{r-1} \binom{r-1}{l} 2^{1-2r} \int_0^1 x^l p^{l+1} (1 - xp)^{r-1} dx \\
= 2^{1-2r} p \int_0^1 (1 + xp)^{r-1} (1 - xp)^{r-1} dx \\
\leq 2^{1-2r} p.
\]

The rest of proof is the same.