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Abstract

Let G be a connected bipartite graph.We give a short proof, using a variation of

Menger's Theorem, for a new lower bound which relates the bipartite crossing number of

G, denoted by bcr(G), to the edge connectivity properties of G. The general lower bound

implies a weaker version of a very recent result, establishing a bisection based lower bound

on bcr(G) which has algorithmic consequences. Moreover, we show further applications of

our general method to estimate bcr(G) for \well structured" families of graphs, for which

tight isoperimetric inequalities are available. For hypercubes and 2-dimensional meshes,

the upper bounds (asymptotically) are within multiplicative factors of 4 and 2, from the

lower bounds, respectively. The general lower bound also implies a lower bound involving

eigenvalues of G.

1 Introduction and summary

The planar crossing number problem is the problem of drawing a graph with minimum number

of edge crossings in the plane. This is a di�cult, and important problem which is studied in
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graph theory and also in the theory of VLSI [11, 21, 27]. Computing the value of the planar

crossing number is NP -hard [14], and exact values are known only for very restricted classes

of graphs. The exact value of the planar crossing number is not known, even for the complete

graph Kn, for arbitrary values of n. Indeed, there has been numerous results regarding the

approximate values of the crossing number for very speci�c graphs [21, 32]. In this paper we

study a variation of the planar crossing number. Let G = (V0; V1; E) be a connected bipartite

graph, where V0; V1 is the bipartition of vertices into independent sets, and E is the edge set.

A bipartite drawing of G consists of placing the vertices of V0 and V1 into distinct points on two

horizontal lines y = 0; y = 1 in the xy-plane, respectively, and then drawing each edge with one

straight line segment which connects the points of y = 0 and y = 1 where the endvertices of the

edge were placed. Hence, placing the vertices will determine the whole drawing. The bipartite

crossing number of G, denoted by bcr(G) is the minimum number of crossings of edges over all

bipartite drawings of G.

A motivation behind studying bcr(G) is the routing of VLSI (see for example [21, 29]). De-

sirable features of a VLSI chip include small area and small delay. A crucial step in the VLSI

design is the routing stage in which the modules are interconnected, see [29] for details. The

modules are usually placed on the rows of a grid (grids); certain modules on consecutive rows

must be connected using wires. The wires are splitted into horizontal and vertical segments,

where horizontal and vertical segments are assigned to di�erent layers. Although no two wires

are allowed to cross each other physically, wires can cross over each other, that is, one horizontal

segment may run on the top of a vertical segment so that the projection of the two segments

cross. Cross overs are undesirable since they create delay. We can think of modules and wires

connecting them on two consecutive rows of grid as vertices and edges of a bipartite graph.

Hence, by relaxing the requirements, and allowing the routes to be straight lines between the

modules, the routing problem can be modeled as a bipartite drawing problem. A good solution

to the bipartite crossing number problem will allow the designer at an early stage of the de-

sign, to approximate the location of modules, minimizing the number of cross overs, assuming

that the modules will be connected using the straight line segments. Later, the designer can

re�ne and change the shape of wires at a �nal stage of routing. It should be emphasized that,

minimizing the number of the crossings in the initial design, also will help to reduce the grid

sizes, and hence reducing the area [21].

Another motivation behind studying the bipartite crossing number comes from graph drawing.

It is well known that bcr(G) is one of the parameters which strongly inuence the understanding

and the aesthetics of drawings of graphs drawn in a hierarchical fashion. For a survey on drawing

graphs see [10].

The notion of bcr(G) was �rst introduced in [15], [16] and [37], where in [16] exact values for

bcr(G) of complete and complete bipartite graphs and even cycles were obtained. Some basic

observations on bcr(G) were made in [26]. The bipartite crossing number problem is known to

be NP-complete1 [14] but can be solved in polynomial time for bipartite permutation graphs

[33], and trees [30]. A great deal of research has been devoted to the design of algorithms and

heuristics for solving this problem (see for example [6, 7, 12, 19, 24, 34, 36]). Mutzel, and

J�unger and Mutzel [19, 28] had reported experiments indicating the success of their algorithms

in computing near-optimal values of bcr(G) in certain cases. Despite their success in a practical

sense over the range of the applied data, these algorithms did not have a performance guarantee,

and thus one could not expect that they always generate a solution in polynomial time which is

1Technically speaking, the NP-hardness of the problem was proved for multigraphs, but it is widely assumed

that it is also NP-hard for simple graphs.
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provably close to the optimal solution. Thus, these algorithms would not �t the notion of the

theoretically e�cient approximation algorithm [14]. For a more restricted problem when the

positions of the vertices of V0 are �xed Eades and Wormald [12] designed a polynomial time

algorithm which approximates the bipartite crossing number within a multiplicative factor of

3 in this restricted problem. See also [7, 36], and the survey [10].

The latest progress in this area was made recently [30] in which we fully explored the structure

of bipartite drawing by relating them to the linear arrangement problem. In particular, we

showed (Theorem 2.2 in [30]) that when the maximum and minimum degrees are close to each

other, then the asymptotic values of bcr(G) and the optimal linear arrangement of G have the

same order of magnitude. Hence, we derived a provably good approximation algorithm, with

performance guarantees of O(logn log logn) from the optimal, for computing bcr(G). Moreover,

we veri�ed in [30], using the connection between the linear arrangement problem and bipartite

drawings, that bcr(G) is large compared to the bisection of G. Consequently, we showed that

a standard divide and conquer algorithm also approximates bcr(G) within a factor of O(log2 n)

from the optimal, in polynomial time, when the maximum and minimum degrees in G are close

to each other.

In this paper we develop a new lower bound argument using Menger's Theorem which relates

the bipartite crossing number of a graph to the edge connectivity properties of G (Theorem

2.1). The result easily implies good lower bounds involving the bisection, the edge isoperimetric

properties and the eigenvalues of the graph. In particular we give a short proof, establishing a

large lower bound involving the bisection of G (Corollary 2.1), on bcr(G). The bisection based

lower bound presented here is weaker than the one in [30]. Nonetheless, its proof is short,

and in fact the lower bound is strong enough to show that for sparse graphs arising in the

VLSI applications, the standard divide and conquer algorithm can approximate bcr(G) within

a factor of O(log2 n) from the optimal value, in polynomial time. Moreover, the approach taken

here allows to derive lower bounds on the values of bcr(G) which are within small multiplica-

tive constants from the upper bounds, for well structured graphs in which tight isoperimetric

inequalities are available. Results of this nature are signi�cant in graph theory, much in the

spirit of similar results regarding estimating the approximate values of the planar crossing

number for certain graphs. For instance for the 2-dimensional mesh (or grid) M(M;N) we

get 3
4
M2N �O(M3 +MN) � bcr(M(M;N)) � 3

2
M2N �O(MN) and for the N�dimensional

hypercube graph QN we get N4N�2�O(4N) � bcr(QN ) � N4N�1: Finally, we provide a general

lower bound for bcr(G) in terms of the smallest positive Laplacian eigenvalue of the graph.

This paper is the extended version of our conference paper [31].

For G = (V0; V1; E), we will assume throughout this paper that V = V0 [V1 and n = jV j. We

will denote the degree of vertex v by d(v), and denote by �0 the minimum degree among the

vertices in V0. For a bipartite drawing D(G) of a graph G, let bcr(D(G)) denote the number of

the crossings in D(G) (i.e. the number of unordered pairs of crossing edges). When the context

is clear we write D and bcr(D). Note that bcr(G) = minD bcr(D):

2 A general lower bound method

For X � V de�ne

@(X) = fuv 2 E : u 2 X; v 2 V �Xg:
The problem of �nding good lower bounds for j@(X)j; for all X � V , is an important problem

in graph theory and computer science and is studied under the heading edge isoperimetric
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inequalities [3].

For X; Y � V , X \ Y = ; de�ne sep(X; Y ) to be a set of edges in G of smallest cardinality

which separates X from Y in G. Note that jsep(X; Y )j � j@(X)j:
For 0 <  < 1=2, the �bisection of G, denoted by b(G), is the smallest j@(X)j, over all X,

with jV j � jXj � (1� )jV j.
For a bipartite drawing D of G, let vk be the kth vertex on y = 0 from left, and let Ak denote

the set of the �rst k vertices on y = 0 from the left, 1 � k � jV0j.

Theorem 2.1 Let D be a bipartite drawing of G = (V0; V1; E); then the following holds:

2bcr(D) �
jV0j�1X
k=1

(d(vk+1)� 1) (jsep(Ak; V0 � Ak)j � d(vk+1)) :

Proof. Let Pk be a set of edge disjoint paths of largest cardinality with one end point in Ak and

the other in V0 � Ak. A variant of Menger's theorem [35] says that jPkj = jsep(Ak; V0 � Ak)j.
Observe that each path in Pk, except for those including the (k+1)-st vertex vk+1 on y = 0 from

the left, must cross all but one edges incident to the (k + 1)-st vertex vk+1. This observation

can be veri�ed by considering two cases. In the �rst case, Pk does not go through any neighbor

of vk+1, then it crosses all edges incident to vk+1. In the second case, if Pk does go through any

neighbor t of vk+1, then Pk has to cross all edges incident to vk+1 but the edge vk+1t.

v v vv v 43v21 k k+1

P

y=

y=

1

0

t

Fig. 1 : A path P 2 Pk crosses all but one edges incident with vk+1.

Thus the paths in Pk generate a total of at least [d(vk+1) � 1][jPkj � d(vk+1)] crossings on

the edges incident to vk+1 and the theorem follows by taking the sum over all k. (Note that a

factor of 2 is needed on the left hand side, since a crossing will be counted twice.) 2

Leighton [21] proved that 
(b 1
3
(G)

2 � n) is a lower bound on the planar crossing number of

any graph G of bounded degree. In [30], we developed a general theory for studying the

bipartite drawings by relating them to the linear arrangement problem which is another well

known problem in the theory of VLSI [20, 29]. In particular, using an elaborated proof, we

veri�ed that bcr(G) +
P

x2V d
2(x) = 
(�L(G)), where � is the min degree, and L(G) is the

optimal arrangement value. A consequence was that bcr(G)+
P

x2V d
2(x) = 
(�nb(G)). A nice

application of Theorem 2.1, is to provide a weaker version of the bisection related result using

a short and direct proof. This weaker lower bound, however, is strong enough to show that the

standard divide and conquer algorithm has a good performance guarantee for approximating

bcr(G), when G is sparse.
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Corollary 2.1 Let G = (V0; V1; E). Assume that jV0j � jV1j and the number of vertices of

degree 1 in jV0j is at most �jV0j, where 0 � � < 1 is a constant. Let �0 be any positive constant

so that �0 < 1� �, and de�ne � =
1����0

4
. Then for any  � � it holds,

2bcr(G) � �0�0

2
jV0jb(G)�

X
v2V0

d2(v):

In particular, for �0 = 1��
5
, we have � =

1��
5
, and it holds

2bcr(G) = 

�
n�0b 1��

5

(G)
�
� X

v2V0

d2(v):

Proof. Consider the sum in Theorem 2.1 for those values of k which are at least 2�jV0j (and
hence � �n), and are at most jV0j(1�2�). Next note that there are jV0j(1�4�) = jV0j(�+ �0)

such values of the index k, and also that for at least jV0j�0 values, the corresponding term has

d(vk+1) � 2, and hence d(vk+1)� 1 � d(vk+1)

2
� �0

2
. To �nish the proof, since � �  and hence

b� � b , we will show that for the prescribed values of k, jsep(Ak; V0 � Ak)j � b�(G). The set

sep(Ak; V0 �Ak) partitions V into Xk and V �Xk such that Ak � Xk and V0 �Ak � V �Xk.

Clearly jsep(Ak; V0�Ak)j = j@(Xk)j, and it su�ces to show that �n � jXkj � (1� �)n. Note

that jAkj � jXkj � n� jV0 � Akj, for any k. Now observe that for �n � k � jV0j(1� 2�), it

holds that jXkj � �n, and jV0 � Akj � 2jV0j� � n�, and hence proving the claim . 2

Lower bounds that involve the bisection of a graph are known to be useful in showing the

performance guarantee of the approximation algorithms [2, 18, 30]. Hence, a simple algorithmic

application of Corollary 2.1 is that the traditional divide and conquer algorithm can also be

used to approximate bcr(G) within a factor of O(log2 n) from the optimal. The divide stage of

the algorithm uses an approximation algorithm for bisecting a graph such as those in [13, 23].

These bisecting algorithms have a performance guarantee of O(logn) from the optimal. The

details of the next result are standard, and similar (but not identical) to [2, 18, 30]. For

completeness we have included a proof in the appendix.

Theorem 2.2 Let G = (V0; V1; E), with jEj = m, jV0j � jV1j be a degree bounded graph.

Assume that the number of vertices of degree 1 in jV0j is at most �jV0j, where � < 1 is a con-

stant. Let A be a polynomial time algorithm to approximate the 1��
5
-bisection of a graph with

a performance guarantee O(logn). Consider a divide and conquer algorithm which recursively

bisects the graph G, using A, obtains the two drawings, and then inserts the edges of the bisec-

tion between these two drawings. This divide and conquer algorithm generates, in polynomial

time, a bipartite drawing D so that bcr(D) is within a factor of O(log2 n) from the optimal,

provided that m � n(1 + �), where � > 0 is any positive constant.

Remarks. One may think that the above result is not too strong, since it is only valid for

degree bounded graphs. First, it should be noted that for problems arising in the applications

such as VLSI design, the underlying graphs are always degree bounded, and hence �t the

framework described above. Second, the strength of the above result is justi�ed by noting that

the best existing approximation algorithm for the planar crossing number has the performance

guarantee of O(log4 n) [23], only when the graph is degree bounded and has degree at least

4. Hence, we have obtained a factor of O(log2 n) improvement in the performance guarantee

compared to the case of the planar crossing number. Finally, it should be noted that working

with the lower bound of Corollary 2.1 is essential and the previous lower bound of 
(b 1
3
(G)

2�n)
can not be used to show the suboptimality of the solution, since it is too small compared to

the error terms appearing in the right hand side of the recurrence relation in Theorem 2.2.
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3 Bipartite crossing numbers of meshes and hypercubes

For M � N , letM(M;N) denote the 2-dimensional mesh i.e. the graph de�ned by the Carte-

sian product of anM�vertex path with an N�vertex path. Let QN denote the N�dimensional

hypercube graph, i.e. the Cartesian product of N 2-vertex paths.

Using the results in [30] we can obtain bounds on bcr(G) for hypercubes and meshes which

are tight within large constant multiplicative factors. In particular the ratio of upper to lower

bound will be about 60 for the mesh, and about 30 for the cube. In this section we improve

these constants. In the case of M(M;N) we provide the exact values for the small values

M = 2; 3. We emphasize that our main contribution is improving the constants involving the

lower bounds, and that the constructions for the upper bounds are not di�cult to see.

Theorem 3.1 For a mesh M(M;N); 4 �M � N it holds:

3

4
M2N � 1

4
M3 � 9

2
MN � 3

2
M2 � 3M � bcr(M(M;N)) � 3

2
M2N � 3

2
MN:

Proof. Upper bound. View M(M;N) as M rows and N columns. Note that each row or

column is a path. First we place all vertices in V0 [ V1 on the line y = 0 in a column after

column manner. Then we project the vertices of V1 on y = 1. Note that edges in the same row

or same column do not cross each other. Moreover, edges in a column do not cross edges in

another column.

Consider a row, and the corresponding path in the drawing. This path produces at most a

total of M � 2 crossings with all the edges in a �xed column, since this path can intersect all

edges in any column with the exception of at least 1 edge which is incident to a vertex on the

path. We conclude that the total number of crossings between rows and columns is at most

(M � 2)MN . Now consider any two rows, and the two paths p1, and p2 associated with them.

Observe that if an edge e in p1 crosses an edge e0 in p2, then either e and e0 must both have

endpoints in two consecutive columns i, i+1, or e and e0 must have endpoints in 3 consecutive

columns i, i+1, i+2. (Note that in this case column i+1 contains one end point of e and one

end point of e0.) In the former case we refer to the crossing associated with e and e0 as type

one, and in the latter we refer to it as type two. Assume with no loss of generality that both

end points of p1 are in V0. If p2 has endpoints in V0, then crossing of any edge in p1 with any

edge in p2 must be a type two crossing. In this case the total number of crossings between p1
and p2 is exactly N � 2. On the other hand, if p2 has both ends in V1, then crossing of any

edge in p1 and any edge in p2 must be a type one crossing. In this case the total number of

crossings between p1 and p2 is N � 1. Thus the the total number of crossings between all rows

is at most
�
M

2

�
(N � 1) = M(M�1)(N�1)

2
.

We conclude that the total number of crossings in our drawing is at most M(M � 1)3N�1
2

�
3
2
M2N � 3

2
MN .

Lower bound. For the sake of simplicity assume that both M and N are even. Consider a

bipartite drawing of M(M;N). Then jV0j = MN=2: Let Ak denote for k = 1; 2; :::;MN=2 the

set of the �rst k vertices on y = 0 from the left. We use a variant of the proof of Theorem 2.1.

De�ne a function

f(x) =

8><
>:

2
p
x; if 0 � x �M2=4;

M; if M2=4 � x �MN �M2=4;

2
p
MN � x; if MN �M2=4 � x �MN:
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Now we use an edge isoperimetric inequality for meshes. It is known [1, 4] that for any X � V ,

j@(X)j � f(jXj) holds. The set sep(Ak; V0 � Ak) partitions V into Xk and V � Xk such that

Ak � Xk and V0 � Ak � V � Xk. Clearly jsep(Ak; V0 � Ak)j = j@(Xk)j. As Ak � Xk �
V � (V0 � Ak), the concavity of f gives

jsep(Ak; V0 � Ak)j � minff(jAkj); f(jV � (V0 � Ak)j)g = minff(k); f(MN

2
+ k)g:

There are at most M + N vertices in V0 whose degree is less than 4. Let I denote the set of

these vertices. We are going to give a lower bound for the number of crossings for the edges

incident to vk+1. It is convenient not to countthe contribution of vertices vk+1 whose degree is

less than 4. Hence if k runs from 1 to MN=2 � 1, using only vertices vk+1 whose degree is 4,

Theorem 2.1 yields that all (Ak; V0 �Ak) paths but 4 intersect at least 3 of the edges adjacent

to vk+1. We obtain

bcr(M(M;N)) � 3

2

MN
2

�1X
k=1
k+1=2I

(jsep(Ak; V0 � Ak)j � 4):

The denominator 2 occurs before the sum since each crossing is counted at twice. Further,

bcr(M(M;N)) � 3

2

 MN
2

�1X
k=1
k+1=2I

minff(k); f(MN

2
+ k)g

!
�3MN

=
3

2

M2

4X
k=1
k+1=2I

minff(k); f(MN

2
+ k)g

+
3

2

MN
2

�M2

4
�1X

k=M2

4
+1

k+1=2I

minff(k); f(MN

2
+ k)g

+
3

2

MN
2

�1X
k=MN

2
�
M2

4
k+1=2I

minff(k); f(MN

2
+ k)g � 3MN

� 6

M2

4X
k=1

p
k +

3

4
(M2N �M3 � 4M)� 3MN � (M +N)

3M

2

� 6

Z M2

4

0

p
xdx+

3

4
(M2N �M3 � 4M)� 3MN � (M +N)

3M

2

� 3

4
M2N � 1

4
M3 � 9

2
MN � 3

2
M2 � 3M:

2

Theorem 3.2 For N � 3 it holds:

bcr(M(3; N)) = 5N � 6:

7



Proof. Upper bound. Use the same "column after column" principle as in Theorem 3.1. It is

easy to see by induction on N that the resulting drawing has 5N � 6 crossings.

2,1

1,1

3,1 3,2 3,3

2,3

1,31,2

2,2

1,1

2,1 1,2

3,1 2,2

3,2 2,3

1,3 3,3

y=

y= 0

1

Fig. 2 : MeshM(3; 3) and its optimal bipartite drawing

Lower bound. Imagine that M(3; N) consists of 3 row and N column vertices. Let M(3; 3)

denote the submesh induced by the last 3 column vertices. We proceed by induction on N . By a

case analysis we can show that bcr(M(3; 3)) = 9: Suppose that bcr(M(3; N�1)) � 5(N�1)�6,
for N � 4 and consider M(3; N): Using a case analysis again one can show that the edges

incident to the last column vertices inM(3; N) contain at least 5 crossings. In fact this can be

veri�ed considering the submesh M(3; 3) only. Therefore

bcr(M(3; N)) � bcr(M(3; N � 1)) + 5 � 5N � 6: 2

The result bcr(M(2; N)) = N � 1 can be easily deduced from the optimal bipartite drawing

of the even cycle C2N , [16].

Theorem 3.3 For N � 3 it holds:

N4N�2 �O(4N) < bcr(QN) � N4N�1:

Proof. To prove the upper bound, we draw QN recursively and prove a stronger bound by

induction:

bcr(D(QN�1)) � (2N � 5)22N�5 � ((N � 1)2 � (N � 1)� 1)2N�3:

N = 3 provides the base case with unique drawing of Q2. To construct D(QN), we consider a

copy of D(QN�1) on the usual y = 0; y = 1 lines, and translate it along the x axis far enough so

that D(QN�1) does not intersect the translated version denoted by D0(QN�1). Finally, we take

the mirror image of D0(QN�1) with respect to the line y = 1=2 to obtain a drawing D00(QN�1).

Now connect by 2N�1 new edges, according to the recursive structure of the hypercube, the

corresponding vertices of D(QN�1) and D00(QN�1) to obtain D(QN). We have 2bcr(D(QN�1))

crossings in the two subdrawings used in the recursion. Any new edge crosses exactly half of

the new edges (\increasing" edges cross exactly the \decreasing" edges), so new edges make

2N�2 crossings each, totaling to 22N�4 crossings. There are (N � 1)2N�2 old edges in D(QN�1);

each old edge has a copy in D00(QN�1). Note that an new edge can cross either an old edge in

D(QN�1), or the copy of this edge in D00(QN�1), but not both. Hence the number of crossings

of new edges with edges of D(QN�1) [D00(QN�1) is at most 2N�1(N � 1)2N�2.

Hence we have:

bcr(D(QN)) � 2bcr(D(QN�1)) + 22N�4 + (N � 1)2N�12N�2

� 2[(2N � 5)22N�5 � ((N � 1)2 � (N � 1)� 1)2N�3]

+ 22N�4 + (N � 1)2N�12N�2

� (N � 2)22N�3 + (N � 1)22N�3 = (N � 3

2
)22(N�1) < N4N�1:
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y=

y= 0

1
01 10

00 11

001

000

010 100 111

011 101 110

Fig. 3 : Bipartite drawings of Q2 and Q3:

Lower bound. We apply the same argument as for 2-dimensional meshes. Consider a bipartite

drawing of QN . Note that jV0j = 2N�1. For k = 1; 2; :::; 2N�1� 1, let Ak � V0 denote the set of

the �rst k vertices on y = 0 from the left. Following Bollob�as and Leader [5] de�ne a function

f(x) as follows:

f(x) =

(
x(N � log x); if 1 � x � 2N�1;

(2N � x)(N � log(2N � x)); if 2N�1 � x � 2N :

(Here log denotes logarithm of base 2.) An edge isoperimetric inequality for hypercubes (see e.g

[9]) says that for any X � QN , the inequality j@(X)j � f(jXj) holds. Following the reasoning
applied for meshes (i.e. jsep(Ak; V0 � Ak)j � min (f(k); f(2N�1 + k)) for 1 � k � 2N�1) we

show that

jsep(Ak; V0 � Ak)j � minfk(N � log k); (2N�1 � k)(N � log(2N�1 � k))g:
Hence if k runs from 1 to 2N�1 � 1 we get

bcr(QN )

� N � 1

2

2N�1�1X
k=1

(jsep(Ak; V0 � Ak)j �N)

� N � 1

2

2N�1�1X
k=1

minfk(N � log k); (2N�1 � k)(N � log(2N�1 � k))g

� N(N � 1)2N�2

� (N � 1)
2N�2�1X
k=1

k(N � log k) + (N � 1)2N�2 �N(N � 1)2N�2

= N(N � 1)2N�3(2N�2 � 1) + (N � 1)2N�2 �N(N � 1)2N�2

� (N � 1)
2N�2�1X
k=1

k log k;

where we used that for k � 2N�2 it holds k(N � log k) � (2N�1 � k)(N � log(2N�1 � k)).

Observe that

2N�2�1X
k=1

k log k <
Z 2N�2

1
x logxdx = (N � 2)22N�5 � 1

ln 2
22N�6 +

1

4 ln 2
:

Substituting this into the previous inequality we get the result. 2
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4 Using eigenvalues in the general lower bound

We assume familiarity with spectral graph theory and Fan Chung's recent book on the topic

[8], which is our basic reference. We use Laplacian eigenvalues of a graph like [8], and de�ne

�G as the smallest positive Laplacian eigenvalue of the graph G. Recall that the Laplacian of

a graph G is the matrix: I(G) � A(G); where A(G) is the adjacency matrix of the graph G

(A(G) is an n�n matrix with rows and columns indexed by vertices of the graph G and entries

auv; u; v 2 V equal to 1 if there is an edge between vertices u and v and 0 if not) and I(G) is

the diagonal matrix with vertex degrees on the diagonal i.e. ivv = d(v); and iuv = 0 if u 6= v:

For X � V; let vol(X) denote
P

v2X d(v):

The connection between eigenvalues and isoperimetric inequalities has been subject of study

since long. We recall the following theorem from Section 2.2 of [8]: for X � V

j@Xj � �G

2
min(vol(X); vol(V �X)): (1)

Assume now that G = (V0; V1; E) is a bipartite graph in an optimal bipartite drawing D. Let

vi denote the i-th vertex in V0 and Ai denote the set of the �rst i vertices in V0. Let Xi denote

the side of Ai in the vertex partition de�ned by sep(Ai; V0 � Ai). Use (1):

jsep(Ai; V0 � Ai)j = j@Xij � �G

2
min(vol(Xi); vol(V �Xi))

� �G

2
min(vol(Ai); vol(V0 � Ai)):

Using the previous formula for estimating j@Xj in Theorem 2.1, instead of an explicit function

f(x) that is rarely known, we end up with the estimate

2bcr(G) �
jV0j�1X
i=1

(d(vi+1)� 1)

 
�G

2
min(vol(Ai); vol(V0 � Ai))� d(vi+1)

!
: (2)

Formula (2) gives tighter bounds than most approaches e.g. [20] or [17] or [25] combined with

[30], but is not as good as using tight isoperimetric inequalities, if they are available.

Take for example the hypercubes. In this case �QN
= 2=N (p. 6 in [8]) and (2) yields the

lower bound of Theorem 3.3 with a slightly weaker (halved) multiplicative constant.

5 Appendix

Proof of Theorem 2.2 Assume that using A, we partition the graph G to 2 vertex disjoint

subgraphs G1 and G2 recursively. Let m denote the number of edges in G, and �b(G) denote the

number of those edges having one endpoint in the vertex set of G1, and the other in the vertex

set of G2. Let DG1
, and DG2

be the bipartite drawings already obtained by the algorithm for

G1 and G2, respectively, so that the the vertices from the same part of G are on the same line.

Place DG1
on the left of DG2

so that the drawings are disjoint. Let DG denote the drawing

obtained for G, by inserting the edges in the bisection. We have

bcr(D) � bcr(DG1
) + bcr(DG2

) + �b2(G) + �b(G)(m� �b(G)) � bcr(DG1
) + bcr(DG2

) +m�b(G):

10



But since we use, the approximation algorithm A for b(G), we have �b(G) = O(b�(G) logn).

Now observe that m = O(n), as the graph is degree bounded, and use Corollary 2.1 to obtain

bcr(D) � bcr(DG1
) + bcr(DG2

) +O

 
logn(bcr(G) +

X
v2V

d2(v))

!
:

Note that bcr(G) +
P

v2V d
2(v) � bcr(G1) +

P
v2V (G1) d

2(v) + bcr(G2)

+
P

v2V (G2) d
2(v), and hence we deduce after O(logn) iterations that

bcr(D) = O

 
log2 n(bcr(G) +

X
v2V

d2(v))

!
:

To �nish the proof, we will show that bcr(G) = 
(
P

v2V d
2(v)). Indeed we only need to show

bcr(G) = 
(n), since G is degree bounded. However, it is easy to see that bcr(G) � m� n+ 1

[26], and consequently we deduce that bcr(G) = 
(n), since m � (1 + �)n. 2

Acknowledgment. This research was partly done while the second and fourth authors were

visiting Department of Mathematics and Informatics of University in Passau. They thank Prof.

F.-J. Brandenburg for invitation. The authors are indebted to Eva Czabarka for her careful

reading of the manuscript, and to the referee, whose comments were helpful while revising the

manuscript.

References

[1] Ahlswede, R., Bezrukov, S. L., Edge isoperimetric theorems for integer point arrays, Appl.

Math. Lett. 8 (1995), 75{80.

[2] Bhatt, S., Leighton, L., A framework for solving VLSI layout problems, J. Comput. System

Sci 28 (1984) 300-331.

[3] Bollob�as, B., Combinatorics, Chapter 16, Cambridge University Press, 1986.

[4] Bollob�as, B., Leader, I., Edge-isoperimetric inequalities in the grid, Combinatorica 11

(1991), 299{314.

[5] Bollob�as, B., Leader, I., Matchings and paths in cubes, SIAM J. Discrete Mathematics, to

appear.

[6] Brandenburg, F. J., J�unger, M., Mutzel, P., Algorithms for automatic graph drawing,

Technical Report, Max Planck Institute, MPI-I-97-1-007, Saarbr�ucken, March 1997, (in

German).

[7] Catarci, T., The assignment heuristics for crossing reduction, IEEE Transactions on Sys-

tems, Man and Cybernetics 25 (1995), 515{521.

[8] Chung, F. R. K., Spectral Graph Theory, Regional Conference Series in Mathematics Num-

ber 92, American Mathematical Society, Providence, RI, 1997.

[9] Chung, F. R. K., F�uredi, Z., Graham, R. L., Seymour, P. D., On induced subgraphs of the

cube, J. Combinatorial Theory (A) 49 (1988), 180{187.

11



[10] Di Battista, J., Eades, P., Tamassia, R., Tollis, I. G., Algorithms for drawing graphs: an

annotated bibliography, Discrete Computational Geometry 4 (1994), 235{282.

[11] Erd}os, P., Guy, R. P., Crossing number problems, American Math. Monthly, 80 (1973),

52{58.

[12] Eades, P., Wormald, N., Edge crossings in drawings of bipartite graphs, Algorithmica 11

(1994), 379{403.

[13] Even, G., Naor, J. S., Rao, S., Schieber, B., Fast Approximate Graph Partition Algorithms,

in: Proc. 8th Annual ACM-SIAM Symposium on Disc. Algo., 1997, 639{648.

[14] Garey, M. R., Johnson, D. S., Crossing number is NP-complete, SIAM J. Algebraic and

Discrete Methods 4 (1983), 312{316.

[15] Harary, F., Determinants, permanents and bipartite graphs, Mathematical Magazine 42

(1969), 146{148.

[16] Harary, F., Schwenk, A., A new crossing number for bipartite graphs, Utilitas Mathematica

1 (1972), 203{209.

[17] Harper, L. H., Optimal assignments of numbers to vertices, SIAM J. Applied Mathematics

12 (1964), 131{135.

[18] Hansen, M., Approximate algorithms for geometric embeddings in the plane with applica-

tions parallel processing problems, in Proc. 3oth Annual ACM Symposium on Theory of

Computing, 1989, 604-609.

[19] J�unger, M., Mutzel, P., 2-layer straight line crossing minimization: performance of exact

and heuristic algorithms, Journal of Graph Algorithms and Applications 1 (1997), 1{25.

[20] Juvan, M., Mohar, B., Optimal linear labelings and eigenvalues of graphs, Discrete Applied

Mathematics 36 (1992), 153{168.

[21] Leighton, F. T., Complexity issues in VLSI, MIT Press, 1983.

[22] Lengauer, T., Combinatorial algorithms for integrated circuit layouts, Wiley and Sons,

Chichester, UK, 1990.

[23] Leighton F. T., Rao, S., An approximate max ow min cut theorem for multicommodity

ow problem with applications to approximation algorithm, in: Proc. 29th Foundation of

Computer Science, IEEE Computer Society Press, 1988, 422{431.

[24] Mart��, R., A tabu search algorithm for the bipartite drawing problem, European Journal

of Operational Research 106 (1998), 558{569.

[25] Muradyan, D. O., Piliposian, T. E., Minimal numberings of vertices of a rectangular lattice,

Akad. Nauk Armjan. SSR Doklady 70 (1980), 21{27, (in Russian).

[26] May, M., Szkatula, K., On the bipartite crossing number, Control and Cybernetics 17

(1988), 85{98.

12



[27] Pach, J., Agarwal, P. K., Combinatorial Geometry, Wiley and Sons, New York, N. Y.,

1995.

[28] Mutzel, P., An alternative method to crossing minimization on hierarchial graphs, Proc.

Graph Drawing '96, LNCS, Springer Verlag, Berlin, 1997, 318{333.

[29] Sarrafzadeh, M., An introduction to VLSI physical design, McGraw-Hill, New York, 1995.

[30] Shahrokhi, F., S�ykora, O., Sz�ekely, L. A., Vrt'o, On bipartite crossings, biplanar subgraphs,

and the linear arrangement problem, in: Proc. 5th Workshop on Algorithms and Data

Structures, (WADS'97), August 6-8, 1997 Halifax, Nova Scotia, Canada, Lecture Notes in

Computer Science 1272, Springer Verlag, Berlin, 1997, 55{68. (Extended version submitted

to a journal.)

[31] Shahrokhi, F., S�ykora, O., Sz�ekely, L. A., and Vrt'o, I., Bipartite crossing numbers of meshes

and hypercubes, in: Proc. Graph Drawing, (GD'97), September 18{20, 1997 Rome, Italy,

Lecture Notes in Computer Science 1353, Springer Verlag, Berlin, 1997, 37{46.

[32] Shahrokhi, F., S�ykora, O., Sz�ekely, L. A., and Vrt'o, I., Crossing numbers: bounds and

applications, in: Intuitive Geometry, eds. I. B�ar�any and K. B�or�oczky, Bolyai Society Math-

ematical Studies 6, 1997, 179{206.

[33] Spinrad, J., Brandst�adt, A., Stewart, L., Bipartite permutation graphs, Discrete Applied

Mathematics 19, 1987, 279{292.

[34] Sugiyama, K., Tagawa, S., Toda, M., Methods for visual understanding of hierarchical

systems structures, IEEE Transactions on Systems, Man and Cybernetics 11 (1981), 109{

125.

[35] Tutte, W., T., Graph Theory, Addison-Wesley Publishing Company, Reading, 1984.

[36] War�eld, J., Crossing theory and hierarchy mapping, IEEE Transactions on Systems, Man

and Cybernetics 7 (1977), 502{523.

[37] Watkins, M. E., A special crossing number for bipartite graphs: a research problem, Annals

of New York Academy Sciences 175 (1970), 405{410.

13


