CROSSING NUMBERS AND HARD ERDŐS PROBLEMS
IN DISCRETE GEOMETRY

László A. Székely*,
Department of Computer Science, Eötvös University,
Budapest, Muzeum krt 6–8, 1088 Hungary

"A statement about curves is not interesting unless it is already interesting in the case of a circle." H. Steinhaus

Abstract. We show that an old but not well-known lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry, which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among \(n\) points, the minimum number of distinct distances among \(n\) points.

The point of this paper is to derive short proofs for a number of theorems in discrete geometry from Theorem A.

Theorem A. [Leighton [L], Ajtai, Chvátal, Newborn, and Szemerédi [ACNS]]

For any simple graph \(G\) *with* \(n\) *vertices and* \(e \geq 4n\) *edges, the crossing number of* \(G\) *on the plane is at least* \(\frac{e^3}{100n^2}\).*

Theorem A is tight within a constant multiplicative factor for many graphs. Theorem A was conjectured by Erdős and Guy [EG, G], and first proved by Leighton [L], who was unaware of the conjecture, and independently by Ajtai, Chvátal, Newborn, and Szemerédi [ACNS]. Theorem A is still hardly known, some distinguished mathematicians even recently thought of the Erdős–Guy conjecture as an open problem. Shahrokhi, Sýkora, Székely, and Vrťo generalized Theorem A for compact 2-dimensional manifolds with a transparent proof (Theorem E, [SSSV, SSV]). The original proofs of the applications of Theorem A shown here (Theorems B, C, D, F) used sophisticated tools like the covering lemma [ST2]. Although some of those theorems were given simpler proofs and generalizations, which used methods from the theory of VC dimension and extremal graph theory, (see Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [CEGSW], Füredi and Pach [FP], Pach and Agarwal [PA], Pach and Sharir [PS]), the simpler proofs still missed the simplicity and generality shown here. I believe that the notion of crossing number is a central one for discrete geometry, and that the right branch of graph theory to be applied to discrete geometry is rather "extremal topological graph theory" than the classical extremal graph theory. Other lower bounds for the crossing number (see [SSV]) may still have striking applications in discrete geometry.

A drawing of a graph over a surface represents edges by curves such that edges do not pass through vertices and no three edges meet in a common internal point. The crossing number of a graph over a surface is defined as the minimum number of crossings of edges over all drawings of the graph. It is not difficult to see that if we allow the intersection

* This research was supported in part by OTKA T 016 358
of many edges in an internal point but count crossings of pairs of edges, then we did not change the definition of the crossing number. We denote by \(cr(G) \) the planar crossing number of a graph \(G \). We will always use \(\#i \) to denote the number of incidences between the given sets of points and lines (or curves) in a particular situation under discussion. Note that \(c \) in this paper denotes a constant, however, all occurrences of \(c \) may denote different constants.

Theorem B. [Szemerédi and Trotter [ST1]] For \(n \) points and \(l \) lines in the Euclidean plane, the number of incidences among the points and lines is at most \(c((nl)^{2/3} + n + l) \).

Proof. We may assume without loss of generality that all lines are incident to at least one point. Define a graph \(G \) drawn in the plane such that the vertex set of \(G \) is the set of the given \(n \) points, and join two points with an edge drawn as a straight line segment, if the two points are two consecutive points on one of the lines. This drawing shows that \(cr(G) \leq l^2 \). The number of points on any of the lines is one plus the number of edges drawn along that line. Therefore the number of incidences among the points and the lines minus \(l \) is a lower bound for the number of edges in \(G \). Theorem A finishes the proof: either \(4n \geq \#i - l \) or \(cr(G) \geq c(\#i - l)^{3/2}/n^2 \).

The statement of Theorem B for \(n = l \) was conjectured by Erdős [E2]. Although Theorem C below is known as a simple corollary of Theorem B, we prove it, since we use it in the proof of Theorem 4.

Theorem C. [Szemerédi and Trotter [ST1]] For \(n \) points in the Euclidean plane, the number \(l \) of lines containing at least \(k \) \((\sqrt{n} \geq k \geq 2)\) of them, is at most \(cn^{2/3}/k^3 \).

Proof. Repeat the construction of the graph \(G \) from the proof of Theorem A, such that the line set consists of lines passing through at least \(k \) points. Note that \(G \) has at least \(l(k-1) \) edges. Hence, either we have \(l^2 > c3/n^2 > c[l(k-1)]^3/n^2 \), or we have \(l(k-1) < 4n \). In the first case we are at home, and so we are in the second case: \(l < 4n/(k-1) < cn^2/k^3 \) Theorem C, which was conjectured by Erdős and Purdy [E2], is known to be tight for \(2 \leq k \leq \sqrt{n} \) for the points of the \(\sqrt{n} \times \sqrt{n} \) grid [B1]. Erdős in 1946 conjectured [E1], that the number of unit distances among \(n \) points is at most \(n^{1+o(1)} \) and proved that this number is at most \(cn^{3/2} \). In 1973 Józsa and Szemerédi improved this bound to \(o(n^{3/2}) \) [JS]. In 1984 Beck and Spencer [BS] further improved the bound to \(n^{1.44...} \). Finally, Spencer, Szemerédi, and Trotter achieved the best known bound, \(cn^{4/3} \).

Theorem D. [Spencer, Szemerédi, and Trotter [SST]] The number of unit distances among \(n \) points in the plane is at most \(cn^{4/3} \).

Proof. Draw a graph \(G \) in the plane in the following way. The vertex set is the set of given points. Draw a unit circle around each point, in this way circular arcs connect as graph edges the consecutive points on the unit circles. Discard the circles that contain at most two points, and discard one of the (possibly two) multiple edges connecting two points. The resulting graph is \(G \). The number of edges in \(G \) is at least the number of unit distances minus \(O(n) \). The number of crossings of \(G \) in this drawing is at most \(2n^2 \), since any two circles intersect in at most 2 points. Application of Theorem A finishes the proof.

Based on earlier work of Kainen [K] and Kainen and White [KW], Shahrokhi, Sýkora, Székely, and Vrťo [SSSV, SSV] found the following generalization of Theorem A:

Theorem E. [Shahrokhi, Sýkora, Székely, and Vrťo [SSSV, SSV]]
Let us be given a simple graph G drawn on an orientable or non-orientable compact 2-manifold of genus g. Assume that G has n vertices, e edges, and $e \geq 8n$. Then the number of crossings in the drawing of G is at least ce^3/n^2, if $n^2/e \geq g$, and is at least $ce^2/(g+1)$, if $n^2/e \leq g \leq e/64$.

Theorem E is known to be tight within a factor of $O(\log^2(g+2))$ for some graphs [SSSV]. We obtain the following generalization of Theorem B by combining Theorems E and A:

Theorem 1. Let us be given l simple curves and p points on an orientable or non-orientable compact 2-manifold of genus g. Assume that any two curves intersect in at most one point. Assume that every curve is incident to at least one point. Then

$\sum \# i = O((2l)^{2/3} + p + l)$ if $p^2/(\# i - l) \geq g$ and

$\sum \# i = O(l \sqrt{g + 1} + p)$ if $p^2/(\# i - l) \leq g \leq (\# i - l)/64$.

Theorem 2. Suppose G is a multigraph with n nodes, e edges and maximum edge multiplicity m. Then either $e < 5nm$ or $cr(G) \geq ce^3/(n^2m)$.

Take any simple graph H for which Theorem A is tight with a drawing which shows it, and substitute each edge with m closely drawn parallel edges. For the new graph $m \cdot H$ Theorem 2 is tight. For the proof of Theorem 2 we need the following simple fact:

Claim. $cr(k \cdot H) = k^2 cr(H)$.

Proof of the Claim. Take any drawing of H with $cr(H)$ crossings. Substitute the edges of H with k parallel edges closely drawn to the original edge. We obtained a drawing of $k \cdot H$ with $k^2 cr(H)$ edges. On the other hand take any drawing of $k \cdot H$. Picking one representative of parallel edges in $k|E(H)|$ ways, we obtain a drawing of H, which exhibits at least $cr(H)$ crossings. Any pair of crossing edges in $k \cdot H$ that arose above is counted $k|E(H)|^{-2}$ times.

Proof of Theorem 2. For $0 \leq i \leq \log_2 m$, let G_i denote the subgraph of G, in which vertices a, b are joined with $t > 0$ edges if and only if a, b are joined in G by exactly t edges and $2^i \leq t < 2^{i+1}$. Set

$A = \{i \in [0, \log_2 m] : |E(G_i)| \leq 2^{i+3}n\}$ and $B = [0, \log_2 m] \setminus A$.

We may assume $e \geq 5nm$. Therefore, since $\sum_{i \in A} |E(G_i)| \leq 4nm$, we have

$\sum_{i \in B} |E(G_i)| \geq |E(G)| - \sum_{i \in A} |E(G_i)| \geq |E(G)| - 4mn \geq |E(G)|/5$.

Let G_i^* denote the simple graph obtained from G_i by identifying parallel edges. We have

$cr(G) \geq \sum_{i=0}^{\log_2 m} cr(G_i) \geq \sum_{i=0}^{\log_2 m} 2^{i} cr(G_i^*) \geq \sum_{i=0}^{\log_2 m} c \frac{|E(G_i^*)|^3}{n^2} 2^{2i} \geq \sum_{i=0}^{\log_2 m} c \frac{|E(G_i)|^3}{n^2 2^i} = \frac{c}{n^2} \sum_{i=0}^{\log_2 m} \left(\frac{|E(G_i)|}{2^{i/3}} \right)^3 \geq 3$.
(by Hölder’s inequality for $1/3 + 2/3 = 1$)

$$
\frac{c}{n^2} \left(\sum_{i \in B} \frac{|E(G_i)|}{2^{i/3}} \right)^{3/2} \leq \frac{c}{n^2m} \left(\sum_{i \in B} |E(G_i)| \right)^{3/2} \geq \frac{c}{n^2m} \geq \frac{ce^3}{n^2m}.
$$

Theorem 2 immediately yields:

Theorem 3. Let us be given p points and l simple curves in the plane, such that any two curves intersect in at most t points and any two points belong to at most m curves. Then the number of incidences is at most

$$
c(lp)^{2/3}(tm)^{1/3} + l + 5mp.\blacklozenge
$$

Although Theorem B has been given several generalizations, like Theorem 3, they seem to admit algebraic curves only [PS], [CEGSW], [FP].

In 1946 Erdős [E1] wanted to show that n points in the plane determine $cn/\sqrt{\log n}$ distinct distances and showed \sqrt{n}. In 1952 Moser [M] showed $n^{2/3}$. In 1984 Fan Chung [C] showed $n^{5/7}$. Beck [B2] made an improvement to $n^{58/81-\epsilon}$. The recent record was:

Theorem F. [Chung, Szemerédi and Trotter [CST]] At least $n^{4/5}/(\log n)^c$ distinct distances are determined by n points in the plane.\blacklozenge

They proved this for a large c and claimed that a much smaller c, maybe even $c = 0$ can be obtained with their method. However, as they remarked, they did not prove the existence of a single point from which so many distinct distances start. For this modified problem the best known result was

Theorem G. [Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [CEGSW]]

For n points in the plane, there exists one of them, which determines at least $cn^{3/4}$ distinct distances from the others.\blacklozenge

Theorem 4. For n points in the plane, there exists one of them, which determines at least $cn^{4/5}$ distinct distances from the others.

Proof. Assume that t is the maximum number of distinct distances measured from any point. We may assume $t = o(n/\log n)$, otherwise there is nothing to prove. Draw circles around every point with every distance as radius, which can be measured from that point. We have drawn at most t concentric circles around each point. Define a multigraph whose vertices are the points, and whose edges are arcs connecting consecutive points on the circles we have drawn. Delete edges lying in circles containing at most two points. Since $t = o(n)$, the resulting multigraph G still has cn^2 edges. Theorem 2 cannot be applied immediately, since very high edge multiplicities may occur.

Claim. The number of pairs (f, a), where f is a line with at least k points, a is an arc representing an edge of G, and f is the symmetry axis of a, is at most $ctn^2/k^2 + ctn \log n$.

Proof of the Claim. By Theorem C, the number of lines with at least 2^i points is at most $cn^{2}/2^{3i}$, as far as $2^i \leq \sqrt{n}$. For each such line, the number of bisected edges is at most $2t$ times the number of points on the line. Therefore, the number of pairs (f, a) with $k \leq |f| \leq 4\sqrt{n}$ is at most

$$
\sum_{i:k \leq 2^i \leq \sqrt{n}} c t \frac{n^2}{2^{3i}} 2^i \leq \frac{ctn^2}{k^2}.
$$
A simple and well-known inclusion-exclusion argument, e.g. [S], shows that the number of lines with number of points between \(a\) and \(2a\) \((4\sqrt{n} \leq a)\) is at most \(cn/a\). Hence the contribution of such big lines to the number of pairs is at most

\[
\sum_{i : \sqrt{n} < 2^i < n} c t \frac{n}{2^i} 2^i < ctn \log n. \star
\]

Now the number of pairs in the Claim is just the number of edges joining pairs of points which are joined by at least \(k\) edges. Thus, deleting all such edges with \(k = K\sqrt{t}\) for a suitable constant \(K\), we arrive at a multigraph \(G_1\) still having \(cn^2\) edges. The crossing number of \(G_1\) is at most \(2n^2t^2\). Thus using Theorem 2 we have

\[
2n^2t^2 \geq cr(G_1) \geq \frac{c|E(G_1)|^3}{n^2K\sqrt{t}} \geq \frac{cn^6}{n^2K\sqrt{t}}
\]

and the theorem follows. \(\star\)

I am indebted to the anonymous referee, whose suggestions substantially improved the presentation of the paper.

REFERENCES

[K] P. C. Kainen, A lower bound for crossing number of graphs with applications to K_n, $K_{p,q}$ and $Q(d)$, *J. Combinatorial Theory (B)* 12 (1972), 287–298.

