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Abstract

We survey known results and propose open problems on the biplanar crossing num-

ber. We study biplanar crossing numbers of speci�c families of graphs, in particular,

of complete bipartite graphs. We �nd a few particular exact values and give gen-

eral lower and upper bounds for the biplanar crossing number. We �nd the exact

biplanar crossing number of K5;q for every q.

1 Introduction

During WWII in a forced work camp, Paul Tur�an [27] introduced the crossing number

problem, in particular the Brick Factory Problem, which asks for the crossing number of

complete bipartite graphs. The present paper surveys the few known results and proposes

open problems on a variant of the crossing number, the biplanar crossing number, and

solves the biplanar version of the Brick Factory Problem for K5;q exactly.

Recall that a graph G is biplanar [5], if one can write G = G1 [ G2, where G1 and G2

are planar graphs. Let cr(G) denote the standard crossing number of the graph G, i.e.

the minimum number of crossings of its edges over all possible drawings of G in the plane,

under the usual rules for drawings for crossing numbers [20, 26]. Motivated by printed
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circuit boards, Owens [15] introduced the biplanar crossing number of a graph G, that we

denote by cr2(G). By de�nition cr2(G) = minfcr(G1) + cr(G2)g, where the minimum is

taken over all unions G = G1 [G2. A biplanar drawing of a graph G means drawings of

two subgraphs, G1 and G2, of G, on two disjoint planes under the usual rules for drawings

for crossing numbers, such that G1 [G2 = G. Owens described a biplanar drawing of the

complete graph Kn with cr2(Kn) � 7n4=1536+O(n3). One can de�ne crk(G) similarly for

any k � 2, making G a union of k subgraphs. Determining crk(G) would have application

to the design of multilayer VLSI circuits [1]; but perhaps the case k = 2 is the most

interesting, and even this simplest case is little explored so far. Note that one always can

realize cr2(G) by drawing the edges of G1 and G2 on two di�erent sides of the same plane,

while identical vertices of G1 and G2 are placed to identical locations on the plane on the

two sides.

The biplanar crossing number problem is related to the thickness and book crossing

number problems. The thickness �(G) of G is the minimum number of planar graphs

whose union isG. By de�nition, cr2(G) = 0 if and only if �(G) � 2; i.e. G is biplanar. The

nature of the crossing number and the biplanar crossing number problems seems di�erent,

since testing whether cr(G) = 0 can be done in linear time, while testing biplanarity is

an NP-complete problem [12]. Asano's result [3] implies that if a graph is toroidal, then

cr2(G) = 0: Surveys on biplanar graphs and the thickness problem can be found in [5, 13].

A k-book embedding of a graph G consists of placing vertices of G on the spine of a book

and drawing each edge on one of the k pages. The book crossing number of G, denoted

by �k(G), is the minimum total number of crossings on all pages among all k-page book

embedding of G [21]. One can easily observe that cr2(G) � �4(G).

We denote by n the order and by m the size of a graph, and we deviate from this rule

only for complete bipartite graphs.

We are indebted to an anonymous referee for his comments.

2 General Results

2.1 Variants of Euler's Formula

Little is known about the biplanar crossing number in general. Some of the lower bounds

for crossing numbers, mutatis mutandis apply to biplanar crossing numbers. For example,

the lower bound resulting from Euler's formula, cr(G) � m�3n+6 for n � 3, generalizes

to

cr2(G) � m� 6n + 12: (1)

There is a strengthening of the lower bound resulting from Euler's formula for graphs G

with girth � g, cr(G) � m� g(n� 2)=(g � 2) for n � g; and we get

cr2(G) � m� 2
g

g � 2
(n� 2) (2)

for n � g (it follows from combining Theorem 2.1 in [5] with the arguments in [20]). Pach

and T�oth showed ([18] and personal communication from G. T�oth) that with n � 3

cr(G) � 6m� 33n+ 66; (3)

and for triangle-free graphs with n � 4

cr(G) � 6m� 27n+ 54: (4)



These results immediately imply their counterparts for the biplanar crossing number:

cr2(G) � 6m� 66n+ 132; (5)

for n � 3; and for triangle-free graphs with n � 4

cr2(G) � 6m� 54n+ 108: (6)

2.2 Other Lower Bounds

Using our (1) instead of formula (1) from [20] in the second proof of Theorem 3.2 in [20],

one obtains the following biplanar counterpart of the Leighton [10] and Ajtai et al. [2]

bound: for all c > 6, if m � cn, then

cr2(G) �
c� 6

c3
�
m3

n2
: (7)

For somewhat denser graphs one can improve (7) using the Pach-T�oth results cited above.

Pach, Spencer and T�oth [17] proved a conjecture of Simonovits, improving the bound

of (7). If G has girth > 2r and m � 4n, then

cr(G) = 


�
mr+2

nr+1

�
: (8)

It is easy to see that (8) also holds for cr2 instead of cr, if m � 8n.

Lower bounds for the crossing number based on the counting method [20] generalize to

similar arguments setting lower bounds for the biplanar crossing number. Since we are

going to use it, we review the counting method. Assume that we have a sample graph

H. Take a graph G together with a biplanar drawing which realizes its biplanar crossing

number. Without loss of generality we may assume that no adjacent edges cross and any

two edges cross at most once in the drawing [26]. If we �nd A copies of H in G, and no

crossing of the drawing belongs to more than B copies of H, then

cr2(G) � cr2(H)
A

B
:

However, important techniques as the embedding method [10] or the bisection width

method [16], [24] (see also the survey [20]) do not seem to generalize to biplanar crossing

numbers. Even worse, as Tutte noted [5], the biplanar crossing number is not an invariant

for homeomorphic graphs; in fact, the edges of every graph can be subdivided such that

the subdivided graph is biplanar! Furthermore, Beineke [5] shows that the minimum

number of subdivisions needed to make a graph biplanar equals the minimum number of

edges whose deletion leaves a biplanar graph.

Open Problem 1. Find lower bound arguments for the biplanar crossing number based

on structural properties of graphs, not merely on the density of graphs.

J. Spencer [25] was the �rst to �nd such a lower bound. Say that a graph of order n

and size m has property (*), if for every vertex set A with n=6 � jAj � 5n=6, the number

of edges between A and �A is at least m=10000. Spencer showed that if m > cn for a

certain c,
P

d2
i
= o(m2), and the graph has the (*) property, then cr2(G) = 
(m2). Since

random graphs have the (*) property, the biplanar crossing number of the random graph

is 
(p2
�
n

2

�
2

) for p � c0=n. Bounded degree expander graphs also have property (*).



2.3 Drawings, Upper Bounds

We showed [23] using a randomized algorithm, that for all graphs G,

cr2(G) �
3

8
cr(G): (9)

However, one cannot give an upper bound for cr(G) in terms of cr2(G), since there are

graphs G of order n and size m, with crossing number cr(G) = �(m2) (i.e. as large as

possible) and biplanar crossing number cr2(G) = �(m3=n2) (i.e. as small as possible),

for any m = m(n), where m=n exceeds a certain absolute constant. As [23] shows, such

graphs G can be obtained from a certain graph H with cr(H) = �(m3=n2), such that

vertices of H are identi�ed with identically named vertices of H�, where H� is obtained

from H by permuting the vertices randomly.

Open Problem 2. What is the smallest number c� (in place of 3/8), with which (9) is

true?

Owens [15] came up with a conjectured cr2-optimal drawing of Kn which has about 7=24

of the crossings of a conjectured cr-optimal drawing of Kn. This might give some basis

to conjecture that c� � 7=24. On the other hand, we will show in (19)y that cr2(Kn) �
n4=952 for large n, and comparison with cr(Kn) � n4=64 [29] proves c� � 64=952. We

used (9) to prove that for any graph G, �(G) � 2 = O(cr(G):4057) [23]. It is likely that

.4057 can be replaced by smaller constants, perhaps with .25. The example of a complete

graph shows that the constant cannot be smaller than .25.

We see a curious phenomenon. Call a biplanar drawing realizing the biplanar crossing

number of a graph G self-complementary, if the subgraphs G1 and G2 are isomorphic in

the graph theoretic sense. K8 is biplanar, and a self-complementary drawing shows it [5],

and the same can be told about K5;12. Self-complementary biplanar drawings are very

convenient to draw. As G1 and G2 are isomorphic we only need to label the vertices by

symbols like (a : b), which means that the vertex in question is vertex a in the drawing

on the �rst plane, and is vertex b in the drawing on the second plane. (See Figs. 1, 3,

4.) Our drawing in Theorem 6 for the hypercube Qk with even k|although clearly not

optimal, but probably near-optimal|is also self-complementary.

Open Problem 3. Find conditions, which imply that a graph G has some self-

complementary optimal biplanar drawing, i.e. where G1 is isomorphic to G2. In par-
ticular, does K6;q have such a drawing?

Concerning upper bounds for cr2(G), in terms of m, we proved in a joint paper with

Shahrokhi [21] a general upper bound for the k-page book crossing numbers of graphs:

�k(G) �
1

3k2

�
1�

1

2k

�
m2 +O

�
m2

kn

�
; (10)

which together with cr2(G) � �4(G) gives a general upper bound on cr2(G)

cr2(G) �
7

384
m2 +O

�
m2

n

�
: (11)



3 Results and Problems on Complete Bipartite

Graphs

The famous Zarankiewicz's Crossing Number Conjecture or Tur�an's Brick Factory Prob-

lem is as follows:

cr(Kp;q) =

�
p

2

��
p� 1

2

��
q

2

��
q � 1

2

�
: (12)

D. J. Kleitman showed that (12) holds for q � 6 [9] and also proved that the smallest

counterexample to the Zarankiewicz's conjecture must occur for odd p and q. D. R.

Woodall used elaborate computer search to show that (12) holds for K7;7 and K7;9. Thus,

the smallest unsettled instances of Zarankiewicz's conjecture are K7;11 and K9;9. The

following remarkable construction suggests Zarankiewicz's conjecture: place bp=2c vertices
to negative positions on the x-axis, dp=2e vertices to positive positions on the x-axis, bq=2c
vertices to negative positions on the y-axis, dq=2e vertices to positive positions on the y-

axis, and draw pq edges by straight line segments to obtain a drawing of Kp;q.

In this section we work towards a biplanar analogue of the Zarankiewicz's Conjecture

and make conjectures for the cases q = 6 and 8.

3.1 Lower Bounds for Complete Bipartite Graphs

The girth formula (2) yields

cr2(Kp;q) � pq � 4(p+ q � 2): (13)

One can use the counting argument with H = K10;10, G = Kp;q, and the fact that

cr2(K10;10) � 28 from (13), to obtain:

Theorem 1. For 10 � p � q, we have

cr2(Kp;q) �
p(p� 1)q(q � 1)

290
: (14)

For p � 9 we make a �ner analysis of cr2(Kp;q):

3.2 Exact Results for Complete Bipartite Graphs

It is easy to see that K4;q is always biplanar. The result on the thickness of complete

bipartite graphs of Harary et al. [4] implies that for q � 12, �(K5;q) � 2 and �(K5;13) = 3.

Hence cr2(K5;13) � 1. Paterson [19] observed that cr2(K5;13) = 1. Determining the

biplanar crossing number of K5;q for q � 14 is the main result of this paper.

Theorem 2. For any q � 1, we have

cr2(K5;q) =
j q
12

k�
q � 6

j q
12

k
� 6

�
;

and for even q there is an optimal drawing, which is self-complementary.

Proof. We provide a drawing �rst. Assume that q = 12a + b, 0 � b < 12. Partition

the q vertices into 12 consecutive arcs, which are as equal as possible. Let these arcs

be S1; S2; :::; S12. Clearly b arcs contain a + 1 vertices and 12� b arcs contain a vertices.

Consider the regular 12-gon inscribed into the unit circle centered at (0,0), with one vertex



v  :v3   3

v  :v

v  :v

v  :vv  :v1   5 4   2

5   1

2   4

4 : 1

5 : 12

6 : 11

9 : 8

8 : 9

1 : 4

3 : 2

2 : 3

7 : 10

10 : 7

11 : 6

12 : 5

Figure 1: Self-complementary drawing of K5;12

placed in (1,0). Fig. 1 shows a self-complementary biplanar drawing of K5;12, where the

12 vertices are placed into the vertices of the regular 12-gon. To draw K5;q, we place the

5 vertices into the locations as they take in Fig. 1.We use small neighborhoods of the

vertices of this regular 12-gon for the placement of the 12 arcs on the circumscribed circle

of the 12-gon, starting with S1 at (1; 0), and going counterclockwise, i.e. put Si where the

vertex is (i : 5� i) on the �gure. Now we describe a drawing of K5;q on the �rst plane.

Place v1 at (�2; 0) and join it to S4; S5; S6; S7; S8; S9; S10.

Place v2 at (0;�
1

2
) and join it to S8; S9; S10; S11; S12:

Place v3 at (0; 0) and join it to S12; S1; S2 and S6; S7; S8.

Place v4 at (2; 0) and join it to S10; S11; S12; S1; S2; S3; S4.

Place v5 at (0;
1

2
) and join it to S2; S3; S4; S5; S6:

On the second plane, place v1 at (0;
1

2
), v2 at (2; 0), v3 at (0; 0), v4 at (0;�

1

2
), and v5

at (�2; 0). Put S5�i (counting mod 12) where Si was in the �rst plane and and draw the

remaining edges exactly with the same curves that we used in the �rst plane.

In general, vertex (i : 5� i) represents an arc with Si in the �rst plane and an arc with

S5�i in the second plane. Clearly the number of crossings|as we made the necessary



crossings only| is exactly

12X
i=1

�
jSij

2

�
= b

�
a + 1

2

�
+ (12� b)

�
a

2

�
:

Substituting a = bq=12c and b = q � 12bq=12c into the previous formula we get the

required upper bound.

We obtained above a self-complementary drawing of K5;12q. To make this drawing self-

complementary for every even q, the question is, where we put the extra b = 2b0 vertices.

Whenever we have to add two new vertices, they must be added to arcs Si and S5�i for

some i. Note that the twelve arcs make exactly 6 such pairs.

The lower bound is proved by induction on q. The claim is true for 12 � q � 24, as

formula (2) gives a lower bound of q � 12. Assume that it is true for some q � 24: Using

the counting argument with H = K5;q, G = K5;q+1, we argue that

cr2(K5;q+1) �

�
q + 1

12

��
q � 6

�
q + 1

12

�
� 5

�

�

&�
q+1

q

�
�
q�1

q�2

�cr2(K5;q)

'
�

�
q + 1

12

��
q � 6

�
q + 1

12

�
� 5

�

�

�
q + 1

q � 1

j q
12

k�
q � 6

j q
12

k
� 6

�
�

�
q + 1

12

��
q � 6

�
q + 1

12

�
� 5

��
:

To conclude the proof, one has to show that the expression inside the big brackets of

the last line is greater than �1. This can be done by distinguishing two cases: whether

q = 11 (mod12), or not, and doing some algebra. �

Other exact results that we know about cr2(Kp;q) are summarized in the following table.

In some interesting cases we also included lower and upper bounds.

p vs. q 7 8 9 10 11 12 13 14 15 16

6 0 0 2 4 6 8 10 12 14 16

7 1 4 7 10 13 16 19,21

8 4 8 12 16 20 24 29,32

9 7 12 17,19 22, 24

10 10 16 22,24 28,32

All the lower bounds in the table follow from the lower bound (13). Exactness for p = 6

follows from Theorem 3 in Subsection 3.3. Exactness for p = 7 follows from the drawing

Fig. 2 of K7;12 for q = 12; and optimal drawings for K7;q for 8 � q � 11 can be obtained

from Fig. 2 by successively erasing vertices 12; 11; 10; 9, in this order. Note that the

drawings obtained for K7;8, K7;10, and K7;12 are also self-complementary. Unfortunately,

we do not have a biplanar drawing of K7;q that we would dare to think optimal.

Exactness for p = 8 follows from the self-complementary drawing Fig. 3 ofK8;12; optimal

drawings for K8;q for 6 � q � 11 can be obtained from that drawing by e.g. successively

erasing vertices 12,1,7,6,10,3, in this order.

One can get drawings for K9;q and K10;q from the general drawing described in Subsec-

tion 3.4. We know that as early as for K11;11 or K10;13; the estimation (13) is no longer

the best lower bound. This follows from the arguments that lead to (6).
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c:c

d:d

5:6 7:8 4:3 2:1

g:g

11:129:10 3:4 10:9 8:7 12:11

e:e f:f

a:a

1:2 6:5

Figure 2: Self-comlementary drawing of K7;12.

1:1 2:2 3:3 4:4 12:125:5 6:6 7:7 8:8 9:9 10:10 11:11

a:c

b:d

c:a

d:b

h:f

g:e

e:g

f:h

Figure 3: Self-complementary drawing of K8;12.

3.3 Conjectured Exact Results for Complete Bipartite Graphs

Theorem 3. For any q � 1, we have

cr2(K6;q) � 2
jq
8

k�
q � 4

jq
8

k
� 4

�
:

This bound is optimal for any q � 16.



Proof. We provide two di�erent drawings. First drawing. On both planes we draw a

\thinned out" copy of the drawing from the Zarankiewicz conjecture. Place the vertices

v1; v2 and v3 (resp. u1; u2 and u3) on the positive (resp. negative) part of the x axis, in

this order from the origin. Partition the q vertices into 8 almost equal sets, S1; S2; S3; S4
and T1; T2; T3; T4. Place Si(Ti), i = 1; 2; 3; 4 consecutively from the origin toward in�nity

(minus in�nity) on the y axis. On both planes we connect any vi; uj to all or no vertices

of any Sk or Tl, and all connections are straight line segments. For the drawing on the

�rst plane join v1 and u1 with S1; S2; T1; T2; v2 and u2 with S2; S3; T2; T3; v3 and u3 with

S3; S4; T3; T4. For the drawing on the second plane the locations of vi's and ui's are

the same. But place the Si's vertices in the order S3; S4; S1; S2, from the origin toward

in�nity; and place the Ti's vertices in the order T3; T4; T1; T2, from the origin toward minus

in�nity. Draw the remaining edges with straight line segments. The number of crossings

is precisely

2

��
jS1j

2

�
+

�
jS2j

2

�
+

�
jS3j

2

�
+

�
jS4j

2

�
+

�
jT1j

2

�
+

�
jT2j

2

�
+

�
jT3j

2

�
+

�
jT4j

2

��
: (15)

Simple algebra shows that this is equal to the expresion in the statement of the Theorem.

Second drawing. Fig. 4 shows a crossing-free self-complementary drawing of K6;8. We

explain how to extend it into a self-complementary drawing with the same number of

crossings as the �rst drawing. Assume �rst that n = 8k. Substitute every lettered vertex

in Fig. 4 with k vertices on a very short straight line segment. We will join all three

former neighbors of a lettered vertex to all k successors of the lettered vertex. Join one

of the three from one side of the short straight line segment, and join the two others from

the other side of the short straight line segment. Clearly the number of crossings is the

same as in (15). If q = 8k + r (1 � r � 3), then use k + 1 successor vertices for r of the

lettered vertices (a : a) and (c : c) and (g : g). If q = 8k + 4 + r (1 � r � 3), then use

k + 1 successor vertices for the lettered vertices (e : b) and (b : e) and (d : f) and (f : d);

and also use k + 1 successor vertices for r of the lettered vertices (a : a) and (c : c) and

(g : g). The number of crossings is|in all cases|the same as in (15) again.

The optimality of the lower bound for q � 16 follows from (2), which gives a lower

bound of 2q � 16: �
We would like to point out that if cr2(K6;q) is even for every q, then the counting

argument from the proof of Theorem 2, mutatis mutandis, can be repeated for Theorem 3.

Note that if K6;q has an optimal biplanar drawing in which G1 is isomorphic to G2, as we

conjecture, then cr2(K6;q) is even.

Theorem 4. For any q � 1, we have

cr2(K8;q) � 4
jq
6

k�
q � 3

jq
6

k
� 3

�
:

This bound is optimal for any q � 12.

Proof. Place the vertices v1; v2; v3 and v4 (resp. u1; u2; u3 and u4) on the positive (resp.

negative) part of the y axis, in this order from the origin. Partition the q vertices into

6 almost equal sets, S1; S2; S3 and T1; T2; T3. Place Si(Ti), i = 1; 2; 3; consecutively from

the origin toward in�nity (minus in�nity) on the x axis. On both planes we connect any

vi; uj to all or no vertices of any Sk or Tl, and all connections are straight line segments.

For the drawing on the �rst plane join v1 and u1 with S1; T1; v2 and u2 with S1; S2; T1; T2;

v3 and u3 with S2; S3; T2; T3 and v4; u4 to S3; T3. For the drawing on the second plane the



e:b

a:a

b:e

h:h

f:d

d:f

c:c

g:g

1:6 2:5 3:4 5:2 6:14:3

Figure 4: Self-complementary drawing of K6;8.

locations of Si's and Ti's are the same. But place the vi's vertices in the order v3; v4; v1; v2,

from the origin toward in�nity; and place the ui's vertices in the order u3; u4; u1; u2, from

the origin toward minus in�nity. Draw the remaining edges with straight line segments.

The number of crossings is precisely

4

��
jS1j

2

�
+

�
jS2j

2

�
+

�
jS3j

2

�
+

�
jT1j

2

�
+

�
jT2j

2

�
+

�
jT3j

2

��
:

The rest is similar as in the proof of Theorem 3. Optimality follows from (2), which gives

a lower bound of 4q � 24: �

Open Problem 4. Prove that the upper bounds in Theorem 3 and in Theorem 4 are
optimal.Make a �rst step in this direction by proving that cr2(K6;q) = (1

8
+ o(1))q2.



3.4 The Best Known Drawings for other Complete Bipartite

Graphs

Theorem 5. For any p � 6; q � 8, we have

cr2(Kp;q) �
lp
6

m lq
8

m�
32
lp
6

m lq
8

m
� 20

lp
6

m
� 24

lq
8

m
+ 12

�

�
1

144
(p+ 5)(q + 7)(2pq + 4p+ q � 7):

Proof. We generalize the drawings forK6;q andK8;q: Partition the p vertices into almost

equal sets X1; X2; :::; X6: Place X1; X2; X3 (resp. X4; X5; X6) on the positive (negative)

part of the x axis in this order from the origin towards in�nity (minus in�nity). Partition

the q vertices into almost equal sets Y1; Y2; :::; Y8: Place Y1; Y2; Y3; Y4 (resp. Y5; Y6; Y7; Y8)

on the positive (negative) part of the y axis in this order from the origin towards in�nity

(minus in�nity).

On both planes we connect all vertices of any Xi to all or no vertices of any Yj, and

all connections are straight line segments. For the drawing on the �rst plane join X1

and X4 with Y1; Y2; Y5; Y6; X2 and X5 with Y2; Y3; Y6; Y7; X3 and X6 with Y3; Y4; Y7; Y8.

For the drawing on the second plane the locations of Xi's are the same. Place the Yi's

vertices in the order Y3; Y4; Y1; Y2, from the origin towards in�nity; and Y7; Y8; Y5; Y6, from

the origin towards minus in�nity on the y axis. Draw the remaining edges with straight

line segments. By counting up of all kinds of crossings in the drawing and by regrouping

terms we get that the number of crossings is precisely

6X
i=1

�
jXij

2

� 8X
j=1

�
jYjj

2

�
+

��
jX1j

2

�
+

�
jX3j

2

�
+

�
jX4j

2

�
+

�
jX6j

2

��
(jY1jjY2j+ jY3jjY4j+ jY5jjY6j+ jY7jjY8j)+��

jX2j

2

�
+

�
jX5j

2

��
(jY1jjY4j+ jY2jjY3j+ jY5jjY8j+ jY6jjY7j)+

(jX1jjX2j+ jX4jjX5j)

��
jY2j

2

�
+

�
jY4j

2

�
+

�
jY6j

2

�
+

�
jY8j

2

��
+

(jX2jjX3j+ jX5jjX6j)

��
jY1j

2

�
+

�
jY3j

2

�
+

�
jY5j

2

�
+

�
jY7j

2

��
:

First assume that p is divisible by 6 and q is divisible by 8. One can easily compute that

the number of crossings is pq(2pq � 10p� 9q + 36)=144.

Now let p; q be arbitrary numbers. Let p0 be the smallest number divisible by 6 such that

p0 � p and q0 be the smallest number divisible by 8 such that q0 � q. Then the number of

crossings is at most p0q0(2p0q0 � 10p0 � 9q0 + 36)=144: Noting that p0 = 6dp
6
e � p + 5 and

q0 = 8d q
8
e � q + 7 we get the claim. �

Open Problem 5. Make a conjecture showing a pattern for optimal biplanar drawings

of Kp;q, i.e. pose the biplanar version of the Zarankiewicz conjecture. A good conjecture

for K7;q already seems to be hard to �nd.

Open Problem 6. Find an asymptotic formula for cr2(Kp;q) for small �xed p.



4 Results and Problems on Other Speci�c Families

Graphs

4.1 Complete Graphs

Note that bounding cr2(Kn) is a Nordhaus-Gaddum type problem [14]. Owens gave an

explicite biplanar drawing of Kn with

cr2(Kn) �
7

1536
n4 +O(n3):

The same upper bound (up to the second order term), based on a di�erent drawing follows

immediately from our work with Shahrokhi [21] by setting G = Kn in (11).

Harary et al. [4] and Tutte [28] showed that for n � 8, �(Kn) � 2 and �(K9) = 3.

Their construction actually also shows cr2(K9) = 1. Applying the counting argument for

H = K10;10, G = Kn, and using cr2(K10;10) � 28 from (13), we obtain

cr2(Kn) �
1

1158
n4 +O(n3): (16)

We can do somewhat better than (16). Consider a biplanar drawing D of Kn. Then any

subset of vertices induces a biplanar subdrawing, D0, of the induced complete subgraph

G0. Assume that G0 has order n0 and size m0 =
�
n0

2

�
. According to (5),

cr2(G
0) �

8><
>:
6m0 � 66n0 + 132 if n0 � 3

6m0 � 66n0 + 132� 12 if n0 = 2

6m0 � 66n0 + 132� 66 if n0 = 1

6m0 � 66n0 + 132� 132 if n0 = 0.

(17)

Pick now independently with probability p vertices of Kn to obtain a random G0. Taking

expectation of the inequality of two random variables, (17), we obtain:

p4cr2(Kn) � 6mp2�66np+132�12

�
n

2

�
p2(1�p)n�2�66np(1�p)n�1�132(1�p)n: (18)

Setting p = 30:073871=n in (18) yields that for n su�ciently large,

cr2(Kn) �
n4

952
: (19)

It follows from the counting argument applied to G = Kn and H = Kn�1, that

cr(Kn)=
�
n

4

�
is a non-decreasing function of n, and hence has �nite limit. The same argu-

ment applies to cr2(Kn) as well

Open Problem 7. Improve the lower bound in (19). Is limn!1 cr2(Kn)=
�
n

4

�
= 7

24
� 24
64

=
7

64
? Find exact values for the biplanar crossing numbers of complete graphs for small

values n = 10; 11; :::.

4.2 Hypercubes

For the k-dimensional hypercube Qk, it is known that �(Q7) � 2 and the estimation (2)

gives cr2(Q8) � 8: We give a general upper bound for the biplanar crossing number of

hypercubes.



Theorem 6. For k � 8

cr2(Qk) �

8<
:

165

512
2
3

2
k +O(k22k); if k is even;

176

512
2
3

2
k +O(k22k); if k is odd.

Proof. Our biplanar drawing of Qk will be based on the best known planar drawing due

to Faria and Figueiredo [6] satisfying

cr(Qk) �
165

1024
4k � (2k2 � 11k + 34)2k�3: (20)

Let 0 � i � k: Observe that all edges belonging to the �rst i dimensions in Qk induce

2i distinct hypercubes isomorphic to Qk�i. Draw these hypercubes on the �rst plane and

the 2k�i hypercubes isomorphic to Qi, induced by the last k� i dimensions on the second

plane, using (20). We get a biplanar drawing with

cr2(Qk) �
165

1024
22k�i +

165

1024
2k+i:

Finally, by setting i = dk=2e, we get the result. �
Unfortunately, the lower bound formula (7) gives only a weak estimation of order


(k32k), and even (8) improves it insigni�cantly to 
(k42k). In order to use (8), we

have to note that we can keep a positive percentage of edges of Qk, while destroying all

4-cycles by throwing out edges, see [8]. We know that our drawing is not optimal: some

edges between vertex disjoint copies of Qbk=2c (resp. Qdk=2e) can be brought over from

the other plane without making new crossings, and in this way their old crossings are

eliminated.

Open Problem 8. Is the upper bound in Theorem 6 still the best possible up to a
constant multiplicative factor?

4.3 Meshes

In the standard plane crossing number theory one of the most studied graph is the toroidal

mesh, i.e. the Cartesian product of two cycles. See the recent paper [7] for the almost

complete exact solution. We will concentrate on the biplanar crossing number of toroidal

and ordinary meshes. It is an easy exercise to show that the graph Cn1
� Cn2

� Cn3
is

biplanar for any 3 � n1; n2; n3: On the other hand Cn1
� Cn2

� Cn3
� Cn4

has thickness

at least 3. We can prove that cr2(P2 � Cn � Cn � Cn) = 0. We do not know whether

Open Problem 9. Is it true that cr2(Pn � Cn � Cn � Cn) = 0?

If it is nonzero, it is surprisingly small, since we have a biplanar drawing showing that

cr2(Pn �Cn �Cn �Cn) = O(n4), which is just linear in the number of edges. (Put edges

from the �rst two dimensions on the �rst plane, and edges from the second two dimensions

on the second plane.)

Theorem 7. For even k

cr2

� kY
i=1

Cn

�
� 2

k

2
+5nk�2:



Proof. Put the edges of the �rst k=2 dimensions on the �rst plane. They induce 2
k

2

vertex disjoint subgraphs isomorphic to
Q k

2

i=1
Cn. Place the leftover edges on the second

plane. Using the estimation

cr

� k

2Y
i=1

Cn

�
� 16nk�2

from [22] we get the result. �
We leave it to the Reader to prove an analogue of Theorem 7 for odd k.

Open Problem 10. Show that the the upper bound in Theorem 7 is tight.

5 Conclusion

Our knowledge on biplanar crossing numbers is as rudimentary as it was our knowledge

on crossing numbers till Leighton's work [10] in the 70's. Bisection width and graph

embedding methods cannot be used, only the counting method and density-based lower

bounds are available. We hope that the development of structure-based lower bounds

for the biplanar crossing numbers will shed light to some so far unknown properties of

ordinary crossing numbers as well.
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