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Abstract

A sufficient condition is given that a certain drawing minimizes the cross-

ing number. The condition is in terms of intersections in an arbitrary set

system related to the drawing, and is like a correlation inequality.
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1 Definitions

First I recall from [5] definitions for two kinds of drawings, in which different
kinds of crossing numbers can be conveniently set.

A drawing D of a finite graph G on the plane is an injection φ from the
vertex set V (G) into the plane, and a mapping of the edge set E(G) into the
set of simple plane curves, i.e. homeomorphic images of the interval [0, 1], such
that the curve corresponding to the edge e = uv has endpoints φ(u) and φ(v),
and contains no more points from the image of φ.

We say that two edges in a drawing cross in a certain point of the plane,
or the point is a crossing point of the two edges, if this point belongs to the
interiors of the curves representing the edges. The number of crossings cr(D)
in the drawing D is the sum of the number of crossing points for all unordered
pairs of edges.

A drawing D is normal if it satisfies (i), (ii) and (iii):

(i) any two of the curves have finitely many points in common; and
(ii) no two curves have a point in common in a tangential (touching) way
(i.e. defining locally the “left side” and the “right side” of the curves at the
common point, both curves are present at both sides of each in every small
neighborhood of that point);

(iii) no point of the plane belongs to the interior of three curves, each represent-
ing an edge of the graph.

A drawing D is nice, if it is normal, and in addition satisfies

(iv) no two adjacent edges (i.e. edges sharing an endpoint) cross; and
(v) any two edges cross at most once.

The crossing number CR(G) of the graph G is the minimum of cr(D) over
all drawings of G. We call a drawing D optimal (for CR) if it realizes cr(D) =
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CR(G). It is easy to see that an optimal drawing must satisfy (i) and (ii), and
a little work shows that it also must satisfy (iv) and (v). (Condition (iii) makes
little difference other than allowing a simpler definition of CR(G) by counting
crossings in D, instead of looking at pairs of edges.) Therefore, we have an
equivalent definition of CR(G): the minimum of cr(D) over all normal, nice
drawings of G.

Pach and Tóth [3] introduced two new variants of the crossing number prob-
lem:
the pairwise crossing number CR-PAIR(G) is equal to the minimum number
of unordered pairs of edges that cross each other at least once (i.e. they are
counted once instead of as many times they cross), over all normal drawings of
G; and
the odd crossing number CR-ODD(G) is equal to the minimum number of un-
ordered pairs of edges that cross each other odd times, over all normal drawings
of G.

In Tutte’s work [8] another kind of crossing number is implicit:
the independent-odd crossing number. Let cr-iodd(D) denote the number of
unordered pairs of non-adjacent edges that cross each other odd times in a
normal drawing D of the graph G, and let CR-IODD(G) denote the minimum
of cr-iodd(D) over all normal drawings D of G.

The following chain of inequalities is obvious from the definitions:

CR-IODD(G) ≤ CR-ODD(G) ≤ CR-PAIR(G) ≤ CR(G). (1)

No example of strict inequality was known for a long time, but in a recent
work Pelsmajer, Schaefer and Štefankovič [4] showed examples of graphs G

with CR-ODD(G) < CR(G).

2 The criterion

Let us associate with every edge e = {x, y} ∈ E(G) an arbitrary vertex set
Ae ⊆ V (G) \ {x, y}. If the edges e and f are non-adjacent, then we define the
parity of this edge pair as 0 or 1 according to

par(e, f) = |e ∩ Af | + |f ∩ Ae| modulo 2. (2)

Let us be given a normal drawing D of the simple graph G. If non-adjacent
edges e, f cross in D odd times, then we write e×odd

D f , otherwise write e×even
D f .

Later, if not specified otherwise, single summations written for pairs of edges
mean summations are for unordered pairs of non-adjacent edges.

Theorem 2.1 Using the notation above, the condition that

for all e 7→ Ae assignments
∑

par(e,f)=1

e×odd
D

f

1 ≤
∑

par(e,f)=1

e×even
D

f

1 (3)

holds, is equivalent to the CR-IODD-optimality of D. Furthermore, if D is

nice, then D is optimal for CR as well.

It is hard to verify whether this criterion holds, since checking the condition for
all possible sets Ae requires exponential time. This not surprising, in view of
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the NP-completeness of the decision problems CR(G) ≤ k (Garey and Johnson
[1]), of CR-ODD(G) ≤ k (Pach and Tóth [3]), and the NP-hardness of the
decision problem CR-PAIR(G) ≤ k (Pach and Tóth [3]). However, inequality
(3), which looks like a correlation inequality formulated about random edge
pairs, may have a less exhaustive and more theoretical proof for some graphs
and their drawings that show a high degree of structure. A natural candidate
would be Zarankiewicz’ drawing of the complete bipartite graph, which is nice
and conjectured to be optimal. For the fascinating history of Turán’s Brick
Factory Problem [7] and the Zarankiewicz drawing [10], see [6] and the classic
[2]. For the best current result, see [9].

Note that if the second part of the criterion applies as the drawing is nice,
then CR(G) equals to CR-IODD(G).

3 Proof of the criterion

We recall what we need from [5]. Let us be given an arbitrary cyclic order
C = v1, v2, ..., vn of the vertices of a simple graph G. We say that two non-
adjacent edges of G, say xy and uz are in acyclic order, if the cyclic order C
restricted to these 4 vertices is x, u, y, z or x, z, y, u. Otherwise, two non-adjacent
edges are in cyclic order. These two relations are clearly symmetric. In [5] we
defined the relation OC of non-adjacent edges of G as follows:

OC(xy, uz) =
{

1 if xy and uz are in cyclic order,
0 otherwise.

(4)

Note that OC(xy, uz) = OC(xy, zu) = OC(uz, xy).
Let us be given a normal drawing D of the graph G and a fixed OC . In [5] we

associated with the curve representing the edge e = {x, y} ∈ E(G) a particular
function Qxy : V (G) \ {x, y} → {1,−1}, which also depends on the binary
relation OC , such that changing any function Qxy to −Qxy makes no difference;
and we also observed in [5] that any set of functions

Q =

{

Qab : V (G) \ {a, b} → {1,−1} : ab ∈ E(G)

}

(5)

comes from some normal drawing through this association.
(Though just citing (6) would suffice to prove our theorem without even

giving the definition of Qxy here, for the geometrically inclined Reader, we
sketch the definition of Qxy. Deform the normal drawing D without pulling
edges over vertices and keeping normality such that the vertex set of G lies on
the unit circle around the origin in cyclic order C. Consider the following—
possibly self-intersecting—closed curve q in the plane extended with the point
∞: the ray from x to ∞ not passing through the origin, the ray from ∞ to y

not passing through the origin, and the curve representing the yx edge in the
deformed drawing. It is shown in [5] that this closed curve defines two classes of
vertices of V (G) \ {x, y} (one of them can be empty) such that a generic curve
connecting u, v ∈ V (G)\{x, y} passes through q odd number of times if and only
if u and v belong to different classes. Qxy takes value 1 on the elements of one
equivalence class, and takes value −1 on the elements of the other equivalence
class.)
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Formula (20) in [5] shows that xy ×odd
D uz holds if and only if

[1 − OC(xy, uz)]
1 + Qxy(u)Qxy(z)Quz(x)Quz(y)

2

+ OC(xy, uz)
1 − Qxy(u)Qxy(z)Quz(x)Quz(y)

2
(6)

is equal to 1, and xy ×even
D uz holds if and only if (6) is 0. We keep (6) in

this ugly form that we will use in our calculations, but will elucidate (6) in (8).
(There is a typo after (20) in [5], as the minus sign is missing in the formula
Pxy(uz) = −Qxy(u)Qxy(z), but this is irrelevant regarding the conclusions.)
Let us introduce the abbreviation

Q(xy, uz) = Qxy(u)Qxy(z)Quz(x)Quz(y). (7)

Exploiting (6), we obtain

xy ×odd
D uz ⇔ [OC(xy, uz) = 0 ∧ Q(xy, uz) = 1]

∨ [OC(xy, uz) = 1 ∧ Q(xy, uz) = −1];

xy ×even
D uz ⇔ [OC(xy, uz) = 0 ∧ Q(xy, uz) = −1]

∨ [OC(xy, uz) = 1 ∧ Q(xy, uz) = 1]. (8)

Summing up (6) for all ordered pairs of non-adjacent edges, one obtains that
the number of edge pairs crossing odd times in every normal drawing D is

N

2
−

1

2

∑

xy∈E(G)

∑

uz∈E(G)
{u,z}∩{x,y}=∅

{

OC(xy, uz)−
1

2

}

Qxy(u)Qxy(z)Quz(x)Quz(y), (9)

where N denotes the number of unordered pairs of non-adjacent edges in G.
(Though there are many ways to define the binary relation OC , all of them
yield formally the same formula (9), since Q in (9) depends on the choice of the
relation OC .)

Let us fix the graph G, and the binary relation OC . Consider two normal
drawings of G, an arbitrary D′, and a D optimal for CR-IODD. Let Q and Q′

denote the set of functions associated with D and D′, respectively. According
to (9), the optimality of D′ is equivalent to the inequality

∑

xy∈E(G)

∑

uz∈E(G)

{u,z}∩{x,y}=∅

{

OC(xy, uz)−
1

2

}

Q′
xy(u)Q′

xy(z)Q′
uz(x)Q′

uz(y)(10)

≤
∑

xy∈E(G)

∑

uz∈E(G)

{u,z}∩{x,y}=∅

{

OC(xy, uz)−
1

2

}

Qxy(u)Qxy(z)Quz(x)Quz(y).(11)

For every e = {x, y} ∈ E(G), set

A{x,y} = {z ∈ V (G) \ {x, y} : Q{x,y}(z)Q′
{x,y}(z) = −1}. (12)

Using the definition (2), it is not difficult to see that

Q′
xy(u)Q′

xy(z)Q′
uz(x)Q′

uz(y) = Qxy(u)Qxy(z)Quz(x)Quz(y)(−1)par(xy,uz).

(13)
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Using (13) and the abbreviation (7), one can equivalently rewrite (10–11), based
on a case analysis for OC , as

∑

xy,uz∈E(G)
OC(xy,uz)=0

{

1 − (−1)par(xy,uz)

}

Q(xy, uz) (14)

≤
∑

xy,uz∈E(G)
OC(xy,uz)=1

{

1 − (−1)par(xy,uz)

}

Q(xy, uz). (15)

At this point we claim the following identities for (14) and (15), which we put
into a less formal summation:

∑

OC(xy,uz)=0

par(xy,uz)=1

Q(xy, uz) (16)

=
∑

OC(xy,uz)=0

par(xy,uz)=1

xy×odd
D

uz

Q(xy, uz) +
∑

OC(xy,uz)=0

par(xy,uz)=1

xy×even
D

uz

Q(xy, uz) (17)

=
∑

OC(xy,uz)=0

par(xy,uz)=1

xy×odd
D

uz

1 −
∑

OC(xy,uz)=0

par(xy,uz)=1

xy×even
D

uz

1 (18)

and
∑

OC(xy,uz)=1

par(xy,uz)=1

Q(xy, uz) (19)

=
∑

OC(xy,uz)=1

par(xy,uz)=1

xy×even
D

uz

Q(xy, uz) +
∑

OC(xy,uz)=1

par(xy,uz)=1

xy×odd
D

uz

Q(xy, uz) (20)

=
∑

OC(xy,uz)=1

par(xy,uz)=1

xy×even
D

uz

1 −
∑

OC(xy,uz)=1

par(xy,uz)=1

xy×odd
D

uz

1. (21)

The equalities (18) = (17), and (20) = (21) follow from the fact, that the parity
of the number of crossings of xy and uz, together with the value of OC(xy, uz)
determines the value of Q(xy, uz) as 1 or −1, as substituted. This follows from
(8). Finally, rewrite the inequality (14) ≤ (15) into the equivalent form (18) ≤
(21). Move the negative terms to the other side in the inequality (18) ≤ (21),
to obtain

∑

par(xy,uz)=1

xy×odd
D

uz

1 ≤
∑

par(xy,uz)=1

xy×even
D

uz

1, (22)

and we proved the equivalence part of Theorem 2.1. Therefore, if (3) holds,
then the number of edge pairs crossing odd times in D is as small as possible.
If D is nice, then the number of crossings in D, cr(D), is equal to the number
of non-adjacent edge pairs crossing odd times, cr-iodd(D). Therefore

CR-IODD(G) ≤ CR(G) ≤ cr(D) = cr−iodd(D) = CR-IODD(G),

implying that D is optimal drawing for CR(G).
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crossing number, in: Graph Drawing Lecture Notes in Computer Science
3843 (Springer, Berlin 2006), 386–396.
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