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Abstract

This paper surveys how the concept of crossing number, which used to

be familiar only to a limited group of specialists, emerges as a signi�cant

graph parameter. This paper has dual purposes: �rst, it reviews founda-

tional, historical, and philosophical issues of crossing numbers, second, it

shows a new lower bound for crossing numbers. This new lower bound

may be helpful in estimating crossing numbers.
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1 Foundational issues

Pach and T�oth [49] noted that although researchers seem to agree in what they

understand under the concept of \crossing number", \drawings" are de�ned in a

variety of ways in the literature, and the possibility is there that some de�nitions

might not be equivalent. Pach and T�oth [49] introduced two new versions of

the crossing number problem, and there is a fourth version, implicitly present

in Tutte [66]. First I give a careful de�nition of three classes of drawings, in

which all four kinds of crossing numbers can be conveniently set.

A drawing D of a �nite graph G on the plane is an injection � from the

vertex set V (G) into the plane, and a mapping of the edge set E(G) into the

set of simple plane curves, i.e. homeomorphic images of the interval [0; 1], such

that the curve corresponding to the edge e = uv has endpoints �(u) and �(v),

and contains no more points from the image of �.

We also speak about the images of vertices as vertices, and about the curves

as edges. We say that two edges in a drawing cross in a certain point of the

plane, or the point is a crossing point of the two edges, if this point belongs

to the interiors of the curves representing the edges. The number of crossings

cr(D) in the drawing D is the sum of the number of crossing points for all

unordered pairs of edges.

A drawing D is normal if it satis�es (i) and (ii):

(i) any two of the curves have �nitely many points in common; and

1Research partially supported by the NSF Grant 0072187 and the Hungarian NSF Grant

T 032455.



(ii) no two curves have a point in common in a tangential (touching) way,

i.e. we can de�ne locally the \left side" and the \right side" of the curves at

the common point, both curves are present at both sides of each in every small

neighborhood of that point.

We should have de�ned above intersection points instead of crossing point,

but assumption (ii) allows for speaking about crossing instead of intersection.

For normal drawings we will also assume:

(iii) no point of the plane belongs to the interior of three curves, each represent-

ing an edge of the graph.

Requirement (iii) is convenient, since using it one can simplify the de�ni-

tion of cr(D) to the number of points, where crossing happens in the drawing.

Also, some proof techniques about crossing numbers derive a planar graph with

a drawing from a drawing D by introducing new vertices of degree 4 in the

points of crossing, and those proof techniques require assumption (iii). How-

ever, many drawings in applications, especially straight line drawings, do not

satisfy (iii). Notice that if (iii) fails and some k curves cross each other in an

otherwise normal drawing in a single point, then this situation can easily be

transformed locally into a normal drawing where any two of the k curves cross

each other locally once, and the number of crossings in the drawing does not

change. Therefore we assume (iii) for normal drawings and it will not cause any

problem that some drawings that we use fail (iii). We take a similar approach to

(ii), since some conveniently de�ned drawings|see the last Section|will con-

tain tangential (touching) type of intersections. We take the view that those

are easily removable, and we simply do not count them if they are present.

A drawing D is nice, if it is normal, and in addition satis�es

(iv) no two adjacent edges (i.e. edges sharing an endpoint) cross; and

(v) any two edges cross at most once.

The crossing number CR(G) of the graph G is the minimum of cr(D) over

all drawings of G. We call a drawing D optimal (for CR) if it realizes cr(D) =

CR(G). It is easy to see that an optimal drawing must satisfy (i) and (ii), and

a little work shows that it also must satisfy (iv) and (v). Therefore, we have

an equivalent de�nition of CR(G): the minimum of cr(D) over all normal, nice

drawings of G.

We show (v) �rst. Assume that the curves p and q corresponding to edges

uz and xy cross in points r and t. Call p1; p2; p3 and q1; q2; q3 the pieces of p

and q determined by r and t, with p2 and q2 denoting the rt sections. Rede�ne

the curves as

p0 = p1 [ q2 [ p3 and q0 = q1 [ p2 [ q3: (1)

Now we can eliminate the tangential intersections of p0 and q0 at r and t. A

problem is that p0 and q0 may not be simple curves (i.e we may have created self-

crossings), but we can shortcut them, and this does not increase the number

of crossings in the drawing. (Although we may have generated new crossing

edge pairs, the total number of crossings decreased, contradicting the optimality

of the original drawing. Since this step may create new crossing edge pairs,

one cannot show by using this step that the crossing number is equal to the

pairwise crossing number (see below).) The proof of (iv) is similar, use the

shared endvertex for r, and t for a crossing point. p1 or p3 (q1 or q3) degenerates

for a point. The surgery (1) works again.
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Pach and T�oth [49] introduced two new variants of the crossing number

problem:

the pairwise crossing number CR-PAIR(G) is equal to the minimum number

of unordered pairs of edges that cross each other at least once (i.e. they are

counted once instead of as many times they cross), over all normal drawings of

G; and

the odd crossing number CR-ODD(G) is equal to the minimum number of un-

ordered pairs of edges that cross each other odd times, over all normal drawings

of G.

In Tutte's work [66] another kind of crossing number is implicit:

the independent-odd crossing number CR-IODD(G) is equal to the minimum

number of unordered pairs of non-adjacent edges that cross each other odd

times, over all normal drawings of G.

The following chain of inequalities is obvious from the de�nitions:

CR-IODD(G) � CR-ODD(G) � CR-PAIR(G) � CR(G): (2)

No example of strict inequality is known. Pach [45] considers the problem if all

these numbers are always equal as the most important open problem on crossing

numbers. Mohar [42] independently posed the problem whether

CR-PAIR(G) = CR(G):

The smallest graphs with CR(G) = 1 are K5 and K3;3. For these graphs

the following stronger result holds:

Theorem 1.1 [Chojnacki [11] 1934]

CR-IODD(K5) = 1 and CR-IODD(K3;3) = 1:

(For other proofs and generalizations, see [49, 66]).

F�ary's theorem [20] telling that planar graphs can be drawn using straight

line segments for edges and Zarankiewicz's Crossing Number Conjecture (Sub-

section 2.1) may suggest that optimal drawings can be done using straight line

segments for edges. This is not the case. Guy showed that �rst for K9 [25], and

later Bienstock and Dean [6, 7] constructed graphs with crossing number four

for any number k, such that drawings of those graphs using straight line seg-

ments for edges have more crossings than k. Several authors study CR-LIN(G),

which is the minimum number of crossings if all edges are drawn by straight

line segments [13, 30, 49, 59]; since CR(G) � CR-LIN(G), CR-LIN(G) is the

�fth (and largest) item in the line (2).

It is clear that if similar crossing number problems are posed for the sphere

instead of the plane, stereographic projection shows that the corresponding pla-

nar and spheric crossing numbers are always equal. Crossing number problems

can be posed on orientable and non-orientable surfaces of higher genus, and

many of the results discussed in this paper generalizes for them, see [48, 58, 56,

57].

It is not the purpose of the present paper to give a comprehensive survey

of the literature of crossing numbers. Much of the literature falls into one of

two categories: the �rst investigates exact values of crossing numbers or makes

lower bounds on crossing numbers based on information on the crossing number

of a certain small graph, the second tries to prove bounds based on structural
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properties of the graph. We call the �rst the theory of small graphs, the second

the theory of large graphs. During the early history of crossing numbers the

theory of small graphs existed only. For more information on the early history

and the theory of small graphs, see White and Beineke [70], for the modern

history and the theory of large graphs, see Shahrokhi, S�ykora, Sz�ekely and Vr�to

[58], and for the most recent results see Pach [45]. A bibliography of papers on

crossing numbers by I. Vr�to is available online [68].

2 Theory of small graphs

2.1 Tur�an's Brick Factory Problem

It was Paul Tur�an who introduced the concept of crossing numbers. Tur�an [65]

tells about how he posed the problem, while in a forced labor camp in World

War II: \There were some kilns where the bricks were made and some open

storage yards where the bricks were stored. All the kilns were connected by

rail with all storage yards. ... the trouble was only at crossings. The trucks

generally jumped the rails there, and the bricks fell out of them; in short this

caused a lot of trouble and loss of time ... the idea occured to me that this loss

of time could have been minimized if the number of crossings of the rails had

been minimized. But what is the minimum number of crossings?"

Put in technical terms, Tur�an's Brick Factory Problem is: what is the cross-

ing number CR(Kn;m) of the complete bipartite graph Kn;m?

Place bn=2c vertices to negative positions on the x-axis, dn=2e vertices to
positive positions on the x-axis, bm=2c vertices to negative positions on the y-

axis, dm=2e vertices to positive positions on the y-axis, and draw nm edges by

straight line segments to obtain a drawing of Kn;m. It is not hard to check that

the following formula gives the number of crossings in this particular drawing:$
n

2

%$
n� 1

2

%$
m

2

%$
m� 1

2

%
: (3)

Zarankiewicz's Crossing Number Conjecture is that the drawing described above

is optimal.

The conjectured crossing number of the complete graph Kn is

1

4

$
n

2

%$
n� 1

2

%$
n� 2

2

%$
n� 3

2

%
: (4)

We show a drawing with this number of crossings for even n, the construction

is due to Guy [26] and Bla�zek and Koman [8]: take a soup can, which is home-

omorphic to a sphere, place n=2 vertices equidistantly on the perimeter of the

top disk and on the perimeter of the bottom disk, respectively. Draw a Kn=2

with straight line segments on the top disk and on the bottom disk, respectively.

From one point of the bottom disk, draw shortest helical curves to all vertices

of the top disk. Repeat this for all n=2 vertices on the bottom disk. Although

this is not a straight line drawing of Kn, interestingly, the curves that we use

are \geodetic" on the soup can.

It is usually not hard to come up with drawings of graph whose optimality

is intuitively clear. The diÆculty lies in proving matching lower bounds for the

crossing numbers.
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2.2 Euler's formula

The simplest lower bound for the crossing number of a simple graph with n � 3

vertices and m edges is

m� 3n+ 6: (5)

This immediately follows from Euler's polyhedral formula, and already gives

CR(K5) � 1. A counterpart of this formula for triangle-free graphs CR(G) �
m� 2n+4, which proves CR(K3;3) � 1. Formula (5) can give interesting lower

bounds for small graphs only, since the magnitude of the crossing number can

be as large as m2. It was Pach and T�oth who observed that (5) sets a lower

bound for all four crossing numbers in (2), and this extends to all lower bounds

which solely depend on (5). We present their argument for the smallest crossing

number, CR-IODD(G). If m � 3n � 6, then there is nothing to prove. If

m � 3n�5, then G is non-planar, and hence contains by Kuratowski's Theorem

a subdivision of a K5 or a K3;3 (in fact both). Hence in any normal drawing of

G there is a normal subdrawing of a K5 or a K3;3. By Theorem 1.1, there are

two vertex disjoint paths of G which cross each other an odd number of times.

Hence, there is an edge e from the �rst path and an edge f from the second

path that cross each other odd times. If formula (5) holds for G � e, then it

holds for G, and the base case for this induction proof is m = 3n� 5. If G has

girth g, then the lower bound (5) can be strengthened to (6):

m� g

g � 2
(n� 2): (6)

2.3 Known crossing numbers

Kleitman showed that (3) holds for m � 6 [31] and also proved that the smallest

counterexample to the Zarankiewicz's conjecture must occur for odd n and m.

Woodall [71] used elaborate computer search to show that (3) holds for K7;7

and K7;9. Thus, the smallest unsettled instances of Zarankiewicz's conjecture

are K7;11 and K9;9. CR(Kn) is known to be equal to (4) for n � 10 [25].

There are some in�nite families of graphs whose crossing numbers are known.

Exoo, Harary, and Kabell [19] started the investigation of the crossing number

of generalized Petersen graphs. A generalized Petersen graph G(n; k) has vertex

set fui; vi : 1 � i � ng and edge set fuivi; uiui+1; vivi+k : 1 � i � ng, where
subscripts are taken modulo n. [19] showed that CR(G(n; 2)) = 0, if n = 3

or n is even; CR(G(n; 2)) = 2, when n = 5; and CR(G(n; 2)) = 3, when n is

odd, n � 7. Fiorini [21] showed CR(G(9; 2)) = 2, CR(G(3h; 3)) = h for h � 4,

CR(G(3h+ 2; 3)) = h+ 2, CR(G(4h; 4)) = 2h; and claimed CR(G(10; 3)) = 4.

McQuillan and Richter [43] corrected the last claim by proving CR(G(10; 3)) >

4. Lovre�ci�c Sara�zin showed CR(G(10; 4)) = 4 [40].

Let Cn, Pn, Sn denote the cycle, path, and star with n edges, respectively.

The crossing number of the Cartesian product of any graph G of order 4 with

the cycle Cn, CR(G� Cn), has been determined by Beineke and Ringeisen [5],

and by Jendrol' and �S�cerbov�a [29]; and for any graph G of order 4, CR(G�Pn)

and star CR(G � Sn) has been determined by Kle�s�c [32]. Recently Kle�s�c [33]

determined CR(G�Pn) for all graphs of order 5; see those and the known values
of CR(G� Cn) and CR(G� Sn) in a table on p. 358 in [33].

There is a longstanding conjecture of Harary, Kainen and Schwenk [28],

which states that for n � m � 3, the crossing number of the Cartesian product
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of two cycles,

CR(Cn � Cm) = n(m� 2): (7)

There is a simple drawing with this number of crossings, the diÆculty lies in

proving that n(m� 2) crossings are, in fact, needed. Proving the conjecture for

di�erent small values of n and m took separate, highly technical papers; and

the case n = m = 8 is still open [5, 54, 34, 52, 3, 4]. Richter and Thomassen [52]

introduced here the most general approach so far: consider n red closed curves

and m blue closed curves, where each may cover certain points twice, such that

every blue curve intersects every red curve, and no point of the plane is covered

three times. What is then the minimum number of intersection points of curves?

This problem is rather geometric than graph theoretic, and is a better subject

to inductive arguments than the Cartesian product of two cycles. In a recent

breakthrough paper Glebsky and Salazar [23] proved (7) for every m for all

suÆciently large n, but this already belongs to the theory of large graphs.

2.4 The standard counting method

A basic technique to obtain a lower bound for the crossing number of a larger

graph from that of a sample graph is the standard counting method. Take a

hypothetical fnormal, nice, optimalg drawing of the large graph, �nd many

copies of the sample graph in it, each exhibiting as many crossings as its cross-

ing number. Add up those numbers, and divide by the largest multiplicity

with which a crossing may have been counted in di�erent copies of the sam-

ple graph. Make this argument more tangible by the following example: CR-

IODD(Kn) � (1 + o(1))n4=120. Take a normal drawing of Kn. Any 5 vertices

span a normal subdrawing of a K5, which exhibit at least one pair of non-

adjacent edges crossing odd times. We �nd at least total of
�
n
5

�
such edge pairs,

and every such edge pair occurs in exactly in (n � 4) 5-tuples of vertices. The

claim follows.

Applying the standard counting argument for Kn+1 with sample graph Kn,

or for Kn+1;n+1 with sample graph Kn;n, one obtains that

CR(Kn)

24
�
n
4

� and
CR(Kn;n)

4
�
n
2

�2 (8)

are nondecreasing and bounded. Therefore the sequences in (8) have a limit,

which provides asymptotic formulae CR(Kn) � c1n
4 and CR(Kn;n) � c2n

4

[53, 70]. However, the values of c1 and c2 are not known. The drawings shown

above imply c1 � 1

64
and c2 � 1

16
, and if the drawings are optimal, equalities

hold.

Woodall's result [71], which showed Zarankiewicz's conjecture for K7;9, im-

plies 1

21
� c2 by a standard counting argument. Kleitman's cited result [31]

allows us to use Kn�6;6 as a sample graph to count crossings in Kn, and one

obtains 1

80
� c1. Applying the standard counting argument to Kn with sample

graph Kbn=2c;dn=2e [53] shows, that if c2 = 1

16
then c1 = 1

64
. The converse of

this implication is not known.

2.5 Graph minors

The graph minor community also has an interest in crossing numbers. Their

usual approach is characterization in terms of excluded minors. Robertson and
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Seymour [55] calls a graph H singly crossing provided H is a minor of a graph

that can be drawn on the sphere with at most one crossing. They show that a

graph is singly crossing if and only if it does not have one of 41 explicitly given

graphs as a minor.

3 Theory of large graphs

The modern history started with Leighton's thesis [37]. Leighton introduced

methods to set lower bounds for crossing numbers which instead of crossing

numbers of small graphs, depended on certain parameters of the large graphs.

He introduced three methods that become classic: lower bounds in terms of

number of edges, bisection width, and graph embedding.

3.1 Number of edges

Ajtai et al. [2] and Leighton [37] independently discovered that for graphs with

m � cn edges, the crossing number is at least

CR(G) � c� 3

c3
m3

n2
: (9)

The maximum constant factor in (9) is 4

243
, achieved at selecting c = 4:5. It

follows from the argument after (5) that (9) holds for all four crossing numbers

in (2). The original proofs of (9) went by induction, a folklore probabilistic

proof can be found in [58] and also made it to the Book [1].

For c = 4, Pach and T�oth [50] improved 1

64
to 1

33:75
, but this improved lower

bound is not known to extend for all kinds of crossing numbers.

Erd}os and Guy [17] conjectured (9) (although those who proved it were not

aware of it), and even more. If �(n;m) denotes the minimum crossing number

of graphs with n vertices and m edges, they conjectured that lim�(n;m)n2=m3

has a limit if m=n ! 1 and n2=m ! 1. Recently, Pach, Spencer and T�oth

[48] proved this conjecture, but the value of this limit is not known.

3.2 Bisection width and graph embedding

For this type of results, see the survey [58].

3.3 Random graphs

Pach and T�oth [51] showed that for the random graph model G(n; p) with

m = p
�
n
2

�
> 10n,

CR(G(n; p)) >
m2

4000

almost surely. Spencer and T�oth [59] studied this problem for CR-PAIR, and

were able to show that for every � > 0 and p = n��1,

CR�PAIR(G(n; p)) = 
(m2):
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Using a martingale inequality, Pach and T�oth [51] showed that the following

large deviation inequality holds: for every (m=4)3e�m=4 � � � p
m,

P

"
jCR(G(n; p))� E[CR(G(n; p))]j > 3�m3=2

#
< 3e��

2=4:

3.4 Computational complexity

Garey and Johnson [22] proved that testing CR(G) � k is NP-complete, Pach

and T�oth [49] extended this to CR-ODD, and also proved that CR-PAIR

is NP-hard. The reduction uses the NP-completeness of Linear Arrangement.

Testing planarity, and therefore testing CR(G) � k for any �xed k can be done

in polynomial time|introduce at most k new vertices for crossing points in

all possible ways and test planarity. Leighton and Rao [38] designed the �rst

provably good approximation algorithm for crossing numbers. This algorithm

approximates n + CR(G) within a factor of log4 n for degree bounded graphs

(and therefore provides little information on small crossing numbers). A recent

paper Even, Guha, and Schieber [18] reduced the factor to log3 n. We know

nothing that would exclude the possibility of approximation within a constant

multiplicative factor.

4 Biplanar crossing number

Recall that a graph G is biplanar, if one can write G = G1 [G2, where G1 and

G2 are planar graphs (a graph is understood here as a set of edges). Although

planarity can be tested in polynomial time, testing biplanarity is NP-complete

[41]. Owens [44] introcuced the biplanar crossing number of a graph G, that we

denote by CR2(G). By de�nition CR2(G) = minG1[G2=GfCR(G1)+CR(G2)g,
where CR is the planar crossing number. Biplanar crossing number problems

have a Ramsey avour, and are even more diÆcult than ordinary crossing num-

ber problems. Although (5) and (9) have their natural analogues for CR2(G),

the embedding method or the bisection width method do not seem to generalize

to biplanar crossing numbers. Even worse, as Tutte noted, the biplanar crossing

number is not an invariant for homeomorphic graphs; in fact, the edges of every

graph can be subdivided such that the subdivided graph is biplanar!

Recent work of S�ykora, Sz�ekely, and V�rto focuses on the biplanar crossing

number [61, 62]. They showed that for all graphs G, CR2(G) � 3

8
CR(G).

However, one cannot give an upper bound for CR(G) in terms of CR2(G), since

there are graphs G of order n and sizem, with crossing number CR(G) = �(m2)

(i.e. as large as possible) and biplanar crossing number CR2(G) = �(m3=n2)

(i.e. as small as possible), for any m = m(n), where m=n exceeds a certain

absolute constant.

S�ykora, Sz�ekely, and V�rto also showed that

CR2(K5;n) =
j n
12

k�
n� 6

j n
12

k
� 6
�

(10)

for n � 12. (Note that for n � 11, K5;n is biplanar.)

S�ykora, Sz�ekely, and V�rto [60] refuted in a strong sense Halton's conjecture,

which asserted (among other things) that any graph of maximum degree 6 is

biplanar.
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5 Corroborating Lakatos

Zarankiewicz and Urban��k independently claimed and published that CR(Kn;m)

was actually equal to (3), their proof was reprinted in a book [9], cited, and used

in follow-up papers. Kainen and Ringel discovered a aw in the proof and the

aw withstood all attempts for correction. Richard Guy deserves much credit

for rectifying this confused state of art [26] and also for pointing out \much

more sweeping assumptions than the overt hypotheses of the theorem" in some

other crossing number papers [27].

Imre Lakatos, who applied the Popperian epistemology to mathematics, car-

ried out his arguments [36] on the paradigmatic example of Euler's polyhedral

formula. Actually, crossing numbers, closely connected to Euler's polyhedral

formula by (5), could also have served as his paradigmatic example.

In a recent paper Pach and T�oth [49] scrutinize the very de�nition of crossing

numbers! They point out that some authors might have thought of CR-PAIR

instead of CR.

How is it possible that decades in research of crossing numbers passed by

and no major confusion resulted from these foundational problems? The answer

is the following: the conjectured optimal drawings are usually normal and nice,

and the lower bounds|as (5), (9)|usually also apply for all kinds of crossing

numbers.

6 Applications of crossing numbers

Many concepts have been introduced in the literature which measure quan-

titatively \how far" a non-planar graph is from being a planar graph: genus,

crossing number, thickness, splitting number, skewness, vertex deletion number,

etc. [70, 58]. Computing these quantities (or their slight variations) is known

or conjectured to be NP-hard [22], and apart from this, with the exception of

genus and crossing number, there is not much to tell about them.

So far, only familiarity with the genus was a must for every discrete mathe-

matician. Now the crossing number aligns with the genus, since it has applica-

tions and is connected to other areas of mathematics.

Ringel discovered that the Tur�an number T (n; 5; 4) sets a lower bound for

the crossing number of the complete graph on n vertices. Consider an optimal

(normal, nice) drawing of the complete graph. De�ne a 4-uniform hypergraph

on the vertex set of the complete graph by the quadruplets of vertices of pairs

of crossing edges. Since K5 is non-planar, any 5 element subset of vertices does

contain an edge of the 4-uniform hypergraph.

Leighton's interest in crossing numbers was motivated by VLSI, and he used

the crossing number to set lower bound for the VLSI layout area of the graph.

In fact, the relevance of crossing number for engineering was well-known already

in the pre-VLSI \transistor age" [9].

Sz�ekely [63] used the cited theorem of Ajtai et al. [2] and Leighton [37] to give

a new proof for the Szemer�edi{Trotter theorem, which tells how many incidences

can be among n points and m straight lines in the plane. The proof consists of

comparing the lower bound (9) to an upper bound, coming from a given drawing,

for a certain graph. This crossing number method also yielded simple proofs

[63] for the best available results regarding two classic Erd}os problems: Given
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n points in the plane, how many unit distances can be among them? Given n

points in the plane, what is the least number of distinct distances among them?

Just in a couple of years, the crossing number method gave a number of other

applications to discrete geometry [47, 12, 50], etc. Surprisingly, this crossing

number method is also cited in number theory, see [14, 15, 16, 39, 24, 35].

Some applications, for example [35], actually need a more general version of

the Szemer�edi{Trotter theorem, for the number of incidences among points and

pseudolines [63], which also follows from the crossing number method.

Pach, Spencer and T�oth [48] proved a conjecture of Simonovits, improving

the bound of (9). If G has girth > 2r and m � 4n, then

CR(G) = 


 
mr+2

nr+1

!
; (11)

and proved an even more general theorem for graphs G satisfying a monotone

graph property. Sincem2 > CR(G), (11) immediately implies that a graph with

girth > 2r has at most O(n1+
1
r ) edges, which is the best known result, tight

within a constant multiplicative factor for r = 2; 3; 5. This may be thought of

as an \arti�cial" application, since the proof in [48] uses these corollaries from

extremal graph theory, but this is a new genuine connection between crossing

numbers and extremal graph theory.

7 Formulae for CR-IODD

To have a graph parameter that we cannot even asymptotically evaluate for

complete graphs is rather annoying. In addition, knowing the crossing num-

bers of complete graphs would immediately imply improved lower bounds on

the crossing numbers of many other graphs, either by the standard counting

argument or by graph embedding.

The present section yields formulae for CR-IODD, which are far from ob-

vious how to evaluate, but give a hope to evaluate CR-IODD for complete

graphs.

7.1 Tutte's theory

Earlier, Tutte [66] introduced an algebraic theory of crossing numbers and

proved Chojnacki's Theorem 1.1 from this theory. Tutte's theory is very com-

plicated, since it tries to follow closely not just crossing numbers but drawings.

Tutte studies normal drawings. Denoting the vertex set by V = f1; 2; :::; ng,
he de�nes two orientation for every edge, connecting vertices i and j, ij and

ji. The orientation ij de�nes locally a left side and and a right side of the

curve, as if we were facing j on the curve. Tutte denotes by �(ij; kl), for two

non-adjacent oriented edges ij and kl, the di�erence of the following two num-

bers: number of left-to-right crossings that oriented edge ij does on kl and the

number of right-to-left crossings that oriented edge ij does on kl. He observes

that �(ij; kl) has the same parity as the number of crossings of ij and kl, and

�xing an orientation for every edge, he suggests the lower bound

min
normal drawings

X
j�(ij; kl)j; (12)
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(where summation goes for unordered pairs of non-adjacent edges) for the cross-

ing number, and poses the question if equality holds. It is clear that CR-

ODD �(12)� CR. There is an enigmatic sentence of Tutte \We are taking

the view that crossings of adjacent edges are trivial, and easily got rid of." We

interpret this sentence as a philosophical view and not a mathematical claim.

Pach and T�oth [49] had some formulae, or rather discrete integer programs,

for the value of CR-ODD, which involved pairs of edges. Tutte, and Pach and

T�oth described how their respective formulae transform when an edge is \pulled

over" a vertex, a generic step to move from one drawing to another. I am not

aware of any paper which draws further conclusions on crossings numbers from

Tutte's theory. There seems to be a trade-o� between getting tangible results

and following faithfully the drawing. Our result, presented next, is a mod 2

version of Tutte's theory. This requires only maintaining information on (edge,

vertex) type pairs, which simpli�es everything. We show how these results can

be used to prove Chojnacki's Theorem 1.1.

7.2 The new results

Let us be given an arbitrary cyclic order C = v1; v2; :::; vn of the vertices of a

simple graph G. We say that two non-adjacent edges of G, say xy and uz are

in acyclic order, if the cyclic order C restricted to these 4 vertices is x; u; y; z

or x; z; y; u. Otherwise, two non-adjacent edges are in cyclic order. These two

relations are clearly symmetric. Under a bipartition of a set we understand its

unordered partition into two subsets, one of which may be empty. We use the

notation jj for a bipartition, and write ujjv to express that u and v belong to

di�erent classes, and �jjuv to express that u and v belong to the same class. For
every edge xy 2 E(G), consider an arbitrary bipartition jjxy of V (G) n fx; yg,
and let

B = fjjxy : xy 2 E(G)g (13)

denote the set of bipartitions.

We de�ne now the relations OC and PB of non-adjacent edges of G as follows:

OC(xy; uz) =
n
1 if xy and uz are in cyclic order,

0 otherwise.
(14)

PB(xy; uz) =

�
1 if ujjxyz,
0 otherwise, i.e. if �jjxyuz holds.

(15)

Note thatOC(xy; uz) = OC(xy; zu) = OC(uz; xy), and PB(xy; uz) = PB(yx; uz) =

PB(xy; zu), but it is possible that PB(xy; uz) 6= PB(uz; xy). De�ne

forcedB;C(xy; uz) = [1�OC(xy; uz)][1� PB(xy; uz)][1� PB(uz; xy)]

+ [1�OC(xy; uz)]PB(xy; uz)PB(uz; xy)

+ OC(xy; uz)[1� PB(xy; uz)]PB(uz; xy)

+ OC(xy; uz)PB(xy; uz)][1� PB(uz; xy)]: (16)

Note that forcedB;C(xy; uz) does not change if we interchange x and y, u and

z, or xy and uz. The concepts C, B, PB, OC, and forcedB;C were introduced in

abstract graphs, not in graph drawing, although their function will be to grasp

some properties of graph drawings.
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Theorem 7.1 For every simple graph G and every cyclic order C of V (G), we

have CR-IODD(G) =

min
B

1

2

X
xy2E(G)

X
uz2E(G)

fx;yg\fu;zg=;

forcedB;C(xy; uz) (17)

where the minimization goes for all possible sets of bipartitions of the form (13).

Since forcedB;C(xy; uz) does not change if we interchange xy and uz, therefore

the objective function of the minimization in (17) can be understood as a sum-

mation for unordered pairs of non-adjacent edges of G, without the factor of
1

2
.

We show an equivalent reformulation of Theorem 7.1. Perhaps this refor-

mulation can be evaluated analytically for certain classes of graphs, e.g. com-

plete graphs, and certainly can be evaluated using computer for some partic-

ular graphs. This is just a quartic expression evaluated on �1 values, which

is highly symmetric in the case of complete graphs. For every ab 2 E(G) let

Qab : V (G) n fa; bg ! f�1;+1g be an arbitrary function, such that Qab = Qba.

Observe that every Qab function gives rise to a bipartition of V (G) n fa; bg
through the full inverse image partition, and every bipartition of V (G) n fa; bg
can be obtained by exactly two such functions, where one is the negative of the

other. Also note that the value of the product Qab(u)Qab(z) does not change,

if we write �Qab to the place of Qab. De�ne

Q = fQab : ab 2 E(G)g: (18)

Theorem 7.2 For every simple graph G and every cyclic order C of V (G), we

have CR-IODD(G) =

N

2
�max

Q

1

2

X
xy2E(G)

X
uz2E(G)

fu;zg\fx;yg=;

(
OC(xy; uz)� 1

2

)
Qxy(u)Qxy(z)Quz(x)Quz(y);

(19)

where the maximization goes for a set of functions Q as in (18), and N denotes

the number of unordered pairs of non-adjacent edges in G

Proof to Theorem 7.2: We are going to show that (17) and (19) are equal by

algebraic manipulation. Take a minimizing B in (17). We put the RHS of (17)

into the form of (19). Write Pxy(uz) = 1, if ujjxyz, i.e. PB(xy; uz) = 1 and

Pxy(uz) = �1 otherwise, namely if �jjxyuz, i.e. PB(xy; uz) = 0. It is easy to

see from (16) that

forcedB;C(xy; uz) = [1 � OC(xy; uz)]
1 + Pxy(uz)Puz(xy)

2

+ OC(xy; uz)
1� Pxy(uz)Puz(xy)

2
: (20)

Observe that Pxy, which is de�ned on pairs of vertices, can be written in terms of

Qxy, which is de�ned on vertices, such that Qxy = 1 on one class of the biparti-

tion jjxy, and Qxy = �1 on the other class, since then Pxy(uz) = Qxy(u)Qxy(z).

There is a bijective correspondence between B's and equivalence classes of Q's,
where Q� Q0 if and only for all edges ab, Qab = �Q0

ab. Rewriting (20) in terms

of Q, we obtain (19). Conversely, if Q is given, de�ne Pxy(uz) = Qxy(u)Qxy(z),

and PB(xy; uz) = 1 if Pxy(uz) = 1, otherwise PB(xy; uz) = 0. 2

12



7.3 Proof to Chojnacki's Theorem 1.1

In order to show that Theorem 7.1 is a promising combinatorial approach to

crossing numbers, we give an unexpectedly purely combinatorial proof to Cho-

jnacki's Theorem 1.1.

Proof. Consider the equivalent of (17), which goes for unordered pairs of non-

adjacent edges (see the remark after Theorem 7.1). Assume that for some graph

G, cyclic order C and set of bipartitions B, the summation is zero. Expand the

summation (17), which has zero value, by substituting four terms into every

forcedB;C formula from (16). Since all terms after the substitution are non-

negative, the summation has to be termwise zero. Split the summation for two

parts, where OC(xy; uz) = 0, but the coeÆcient 1 � OC(xy; uz) is present; and

where OC(xy; uz) = 1 and the coeÆcient OC(xy; uz) is present. Hence we are

left with

0 =
X

fxy;uzg
OC(xy;uz)=0

 
[1� PB(xy; uz)][1� PB(uz; xy)]

+ PB(xy; uz)PB(uz; xy)

!

+
X

fxy;uzg
OC(xy;uz)=1

 
[1� PB(xy; uz)PB(uz; xy)

+ PB(xy; uz)][1� PB(uz; xy)]

!
; (21)

where the summations still go for unordered pairs of non-adjacent edges. Ex-

panding the terms after the summations in (21), we see that the generic term

in the �rst summation is 1 + 2PB(xy; uz)PB(uz; xy)� PB(xy; uz)� PB(uz; xy),

and the generic term in the second summation is �2PB(xy; uz)PB(uz; xy) +
PB(xy; uz) + PB(uz; xy). If the number of unordered, non-adjacent edge pairs

in G with OC = 0 is q, then taking (21) mod 2 we obtain:

0 � q +
X

fxy;uzg
fx;yg\fu;zg=;

[PB(xy; uz) + PB(uz; xy)]

� q +
X
xy

X
uz

fx;yg\fu;zg=;

PB(xy; uz) mod 2: (22)

We only need to prove CR-IODD(K5) 6= 0, since CR(K5) � 1 is well-known.

We do indirect proof. Consider the vertices of K5 in the cyclic order C =

1; 2; 3; 4; 5, and we have (22) for G = K5 and a B set of bipartitions realizing

this zero. There are 15 unordered pairs of non-adjacent edges. Note that 10 of

the 15 unordered pairs of non-adjacent edges fxy; uzg yields OC(xy; uz) = 1,

and 5 of them yields OC(xy; uz) = 0, i.e. q = 5. We are going to show that

the double summation in the right-hand side of (22) is even, which yields a

contradiction. Observe that any bipartition jjxy of 3 elements results either

in a 3:0 distribution or in a 2:1 distribution; and in both cases the number

of separated unordered pairs of elements, 3 � 0 or 2 � 1, is even. Recall that

13



PB(xy; uz) = 1 i� jjxy has u and z in di�erent classes. Therefore, for an arbitrary
xy,

P
uz PB(xy; uz) = 2kxy ; even. From here,

X
xy

X
uz

fx;yg\fu;zg=;

PB(xy; uz) = 2k (23)

yields the needed contradiction by 0 � 5 + 2k mod 2. For the other graph, we

only need to prove CR-IODD(K3;3) 6= 0, since CR(K3;3) � 1 is well-known.

We start with a copy of K3;3 in which the colorclasses are f1; 3; 5g (red vertices)
and f2; 4; 6g (white vertices). We use the cyclic order of vertices C =1,2,3,4,5,6.

K3;3 has 9 edges, and 18 unordered pairs of non-adjacent edges. It is easy to see

that 3 unordered pairs of non-adjacent edges yields OC = 0 and 15 unordered

pairs of non-adjacent edges yields OC = 1, i.e. q = 3. We procced as we did

for K5, and repeat a slight variation of the counting argument above. We face

formula (22) again, but keep in mind that the graph is di�erent, C is di�erent,

B is di�erent, and now xy, uz denote non-adjacent edges of K3;3. We will have

a contradiction again by showing that the double sum in (22) is even. It suÆces

to show that for an arbitrary xy 2 E(K3;3),X
uz2E(K3;3)

PB(xy; uz) = 2kxy: (24)

To prove (24), we study how many red-white vertex pairs a bipartition PB
can separate. The possibilities are RRjjWW , RW jjRW , RjjRWW , W jjWRR,

�jjRRWW ; and in each case the number of separated red-white vertex pairs is

even. We showed (24), and have the needed contradiction by 0 � 3 + 2k mod

2. 2

8 Proofs

In the forthcoming arguments we are concerned with the one-point or Alexan-

drov compacti�cation of the plane �, �� = � [ 1. It is well known that ��

is homeomorphic to a sphere. We say that a closed curve c is simply drawn in

��, if c has a �nite number of self-intersections, no point of �� is covered by

c more than twice, and whenever c has a self-intersection, then at that point

we have a crossing, and not a tangential (touching) situation. Take two points

a; b 2 �� n c. We say that a simple curve p connecting a and b is regular with

respect to c, if p does not passes through any self-intersection point of c, p and c

have �nite intersection, and whenever c has a point of intersection with p, then

at that point we have a crossing, and not a tangential (touching) situation.

Lemma 8.1 If c is a simply drawn closed curve in ��, then for any a; b 2 ��nc,
there exists a simple curve p connecting a and b, which is regular with respect

to c. 2

Lemma 8.2 Let us be given a simply drawn closed curve c in the plane, and

a; b 2 �� n c. Assume that two simple curves, l1 and l2 connecting a and b are

regular with respect to c. Then jl1 \ cj and jl2 \ cj have the same parity.

14



Proof. We apply induction on the number of self-intersection points of c. If c

is a simple closed curve, i.e. there are no self-intersections, then the conclusion

follows from the Jordan Curve Theorem. If c has a self-intersection at a point a,

then redraw c to c0 by making change only in a small neighborhood of a, which

is disjoint from l1 and l2, such that we reduce the number of self-intersections of

c by 1. We have jl1 \ c0j = jl1 \ cj and jl2 \ cj = jl2 \ c0j. Then use the inductive

hypothesis jl1 \ c0j � jl2 \ c0j mod 2. 2

Let us be given a simply drawn closed curve c in ��. De�ne two relations

on �� n c as follows:
a �c b, if there is a simple curve connecting points a and b, which is regular

with respect to c, and intersects c even number of times; and

ajcb, if there is a simple curve connecting points a and b, which is regular with

respect to c, and intersects c odd number of times.

Note that Lemma 8.2 implies that these relations are well de�ned.

Lemma 8.3 (i) �c is an equivalence relation; and

(ii) �c and jc are complementary relations, i.e. for any two points a; b 2 �� n c,
exactly one of the relations a �c b and ajcb holds; and

(iii) �c has exactly two classes.

Proof. For (i), only the transitivity of the relation is a problem. Assume that

a �c b is shown by p1 and b �c d is shown by p2. Then, jp1\ cj+ jp2\ cj is even.
If p1 [ p2 is a simple curve, then it is also regular with respect to c, and b �c d

is shown by p1 [ p2. If p1 [ p2 is not a simple curve, let v denote the �rst point

of p2 on p1 (following p1 from a to b). v splits both p1 and p2 into two parts,

say p1 = ap0
1
vp00

1
b, p2 = bp0

2
vp00

2
d. Now ap0

1
vp00

2
d is a simple curve connecting a

to d, and it is regular with respect to c, vp00
1
bp0

2
v is a closed curve; and these two

new curves, ap0
1
vp00

2
d and vp00

1
bp0

2
v together, yield p1 [ p2. If v =2 c, then

jp1 \ cj+ jp2 \ cj = jap0
1
vp00

2
\ cj+ jvp00

1
bp0

2
v \ cj: (25)

We know that the LHS of (25) is even, jvp00
1
bp0

2
v\ cj, which is the �nite intersec-

tion of two closed curves without tangential intersection, is also even, and hence

jap0
1
vp00

2
d \ cj is even. This is what we had to prove for the transitivity. There

is a little more to do, if v 2 c. Then v is a removable (tangential) intersection

point of ap0
1
vp00

2
d and c, and also a removable (tangential) intersection point of

vp00
1
bp0

2
v and c. Remove both tangential intersections by local change, creating a

new simple curve p3 in place of ap0
1
vp00

2
d connecting a and d, and a closed curve

q in place of vp00
1
bp0

2
v. Then,

jp1 \ cj+ jp2 \ cj � jp3 \ cj+ 1 + jq \ cj+ 1 mod 2; (26)

and jp3 \ cj is even again. It is easy to guarantee that p3 is still regular with

respect to c, and now p3 is the evidence for a �c d.

For (ii), one just needs that a and b can be connected by a simple curve p,

which is regular with respect to c; this was Lemma 8.1. (iii) follows. 2

In the future we use the notation�jcuz, if u and z are in the same equivalence
class for c, i.e. u �c z; this notation is suggesting that \c is not separating u and

z", while ujcz is that suggesting that \c is separating u and z". The notation

�jcuz would have been inconvenient for proving Lemma 8.3.
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Construction 8.1 Let us be given four points a; b; c; d in this cyclic order on

a circle S in the plane �. Call A;B;C;D the four rays, perpendicular to S,

which connect the points a; b; c; d to 1 and stay outside the circle. (We follow

the convention of using a lower case letter for a point on the circle, and the

same upper case letter for the ray, which is perpendicular to circle, connecting

this point to 1.) Assume now that x; y 2 fa; b; c; dg, x 6= y are connected

by a simple curve q0; and the other two points, u; z 2 fa; b; c; dg, u 6= z are

connected by a simple curve p0. De�ne the closed curves q = q0 [ X [ 1 [ Y

and p = p0 [ U [1[ Z.

We are going to apply the relations from Lemma 8.3 to the closed curves p

and q. For this end we have to make a few assumptions:

(i) p and q are simply drawn curves,

(ii) x; y =2 p and u; z =2 q,

(iii) 1 =2 p0 and 1 =2 q0.

Observe that if the cyclic order induced by S on the four points is x; u; y; z or

x; z; y; u, then p and q crosses each other at 1; and if the induced cyclic order

is di�erent, p and q intersect in a tangential (touching) situation at 1. If the

touching situation occurs, we could pull p and q slightly apart at1 and remove

this point of intersection (however, for notational convenience, we just do not

count 1 among the crossing points, if touching happens there). We add

(iv) q0 and X [1[ Y are regular with respect to p, and

(v) p0 and U [1[ Z are regular with respect to q.

The following Lemma is crucial:

Lemma 8.4 Assume conditions (i-v) above for Construction 8.1. If the cyclic

order induced by S on the four points is x; u; y; z or x; z; y; u, and either

�jquz and �jpxy or

ujqz and xjpy;

then p0 and q0 crosses odd many times; and

either

�jquz and xjpy or

ujqz and �jpxy;

then p0 and q0 crosses even many times.

If the cyclic order induced by S on the four points is x; y; u; z or x; y; z; u or

x; z; u; y or x; u; z; y, and either

�jquz and xjpy or

ujqz and �jpxy;

then p0 and q0 crosses odd many times; and

either

�jquz and �jpxy or

ujqz and xjpy;

then p0 and q0 crosses even many times.
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Proof. We prove the �rst statement from the list of eight statements. All other

proofs are similar and left to the reader. By de�nition, �jquz means u �q z,

i.e. jp0 \ qj is even. Using the de�nition of q,

jp0 \ q0j+ jp0 \ Y j+ jp0 \Xj � 0 mod 2: (27)

Similarly, �jpxy means x �p y, i.e. jq0 \ pj is even. Using the de�nition of p,

jq0 \ p0j+ jq0 \ U j+ jq0 \ Zj � 0 mod 2: (28)

Since p and q are closed curves, we have that jp \ qj is even. Spelling out all

terms in p \ q we obtain:

1 + jp0 \ q0j+ jp0 \ Y j+ jp0 \Xj+ jq0 \ U j+ jq0 \ Zj � 0 mod 2; (29)

where the term 1 stands for the crossing at 1, which is not removable in the

case of cyclic order that we are in. Adding up (27), (28), and (29), we obtain

that jp0 \ q0j � 1 mod 2, as required. 2

Note that the conditions in the two parts of Lemma 8.4 read in terms of

Section 7 as if we had xy and uz edges in a graph, and they were in acyclic

order and cyclic order, respectively. We introduce the OS relation|analogously

to (14)|for unordered pairs of unordered pairs of points on S, where all four

points are distinct, as follows: OS(xy; uz) = 0 for the following cyclic orders on

S: x; u; y; z or x; z; y; u; and OS(xy; uz) = 1 for all the other cyclic orders on S.

We introduce a relation P � by

P �(xy; uz) =

�
1 if ujqz,
0 otherwise, i.e. if �jquz holds,

(30)

P �(uz; xy) =

�
1 if xjpy,
0 otherwise, i.e. if �jpxy holds.

(31)

Lemma 8.4 immediately implies the next Lemma:

Lemma 8.5 Assume conditions (i-v) for Construction 8.1. The value of the

quantity

CR(p0; q0) = [1�OS(xy; uz)][1� P �(xy; uz)][1� P �(uz; xy)]

+ [1�OS(xy; uz)]P
�(xy; uz)P �(uz; xy)

+ OS(xy; uz)[1� P �(xy; uz)]P �(uz; xy)

+ OS(xy; uz)P
�(xy; uz)][1� P �(uz; xy)] (32)

is 1, if p0 and q0 crosses odd times, and 0 otherwise.

Proof. Lemma 8.4 tells if jp0 \ q0j is odd or even in certain cases. The �rst four

cases of Lemma 8.4 are de�ned by OS(xy; uz) = 0, the last four cases of Lemma

8.4 are de�ned by OS(xy; uz) = 1. By (30) and (31) the conditions in Lemma

8.4 turn into values of P �. Checking all eight cases of Lemma 8.4 �nishes the

proof. 2

Proof to Theorem 7.1: Let D denote a CR-IODD-optimal normal drawing of

a graph G in the plane. Transform this drawing, using a homeomorphism of

the plane to itself, into a new drawing, such that the vertices v1; v2; :::; vn are
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in this cyclic order on a circle S. The transformation does not change which

edges cross and how many times. From the point vi extend a ray Vi, outside

the circle, to 1, such that Vi is perpendicular to the circle. Using another

homeomorphism of the plane to itself, which �xes all the vertices vi, we can

guarantee that carrying out for any two edges of the drawing Construction 8.1,

assumptions (i-v) hold. From now on we call this drawing D. We have

CR-IODD(G) = number the of non-adjacent, unordered edge pairs crossing

odd times in D, which is, by Lemma 8.5X
fp0;q0g

CR(p0; q0);

where the summation goes for non-adjacent, unordered edge pairs in D. Ob-

serve that for non-adjacent, unordered edge pairs xy, uz, we have OS(xy; uz) =

OC(xy; uz); and setting for B0 the set of jq bipartitions arising from q0 represen-

tations of edges in the drawing D, we have

CR(p0; q0) = forcedB0;C(xy; uz);

where p0 represents the edge xy and q0 represents the edge uz. Therefore,

CR�IODD(G) =
1

2

X
xy

X
uz

fx;yg\fu;zg

forcedB0;C(xy; uz)

� min
B

1

2

X
xy

X
uz

fx;yg\fu;zg

forcedB;C(xy; uz): (33)

On the other hand, equality is easy to achieve in (33): given a minimizing

bipartition B, and a placement of the vertices of G on the circle S, for edge xy

draw a simple curve p0 connecting vertices x and y, which does not intersect the

rays X and Y , but p = p0 [X [1 [ Y generates exactly the relation jjxy 2 B
through jp0 . 2
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