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This is a concise review that attempts to show the vast influence of the
work of Paul Erd6s in a narrow area, the combinatorics of unit distances in
geometry. This review tries to follow the history of the problems and cover
the latest and strongest results, but cannot be complete. Excellent sources of
further information are the book of Pach and Agarwal [47], and Chapter 17 in
the Handbook of Combinatorics written by Erdés and Purdy [27]. Exercises in
a book being written by Babai and Frankl [2] also cover many variants of the
coloration problems that I discuss.

1 Coloring R"

E. Nelson and J. R. Isbell, and independently Erdos and H. Hadwiger, posed
the following problem: what is the minimum number of colors needed to color
the points of R™ if points at unit distance apart must receive different colors?
This number is called the chromatic number of R", and is denoted by x(R").
This is exactly the chromatic number of the following graph, which is called the
unit distance graph: V = R" and join two vertices if their distance is one.

For n = 2, there has been no improvement on the estimates 4 < X(]Rz) <7
[36, 44]. We reproduce here the Moser spindle, a configuration of 7 points in
the plane, with the property, that any 3 of the 7 points include 2 points at unit
distance apart. The Moser spindle is evidence that the chromatic number of the
plane is at least four.
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Fig. 1: The Moser spindle. All eleven segments shown are of unit length.

I also show here two doubly periodic colorations of the plane. Points in a
region are colored with the number assigned to the region, boundary points are
colored with the color of any of their neighboring regions.
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Fig. 2: A good 7 coloration of the plane. The diameter of a hexagon is slightly less than 1.

There is no improvement on the lower bound 5 < x(R?) [39] either. However,
D. Coulson [15] proved x(R?) < 18, and recently announced x(R*) < 15.
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Fig. 3 : Another good 7 coloration of the plane. The diagonal of a square is 1.

It is not difficult to come up with an exponential upper bound for x(R").
The best known upper bound, (3 + o(1))", is due to Larman and Rogers [39].
They also showed that if there is a sphere packing in R"™ of density (275 +0(1))"
as conjectured, then x(R") < (2™° + o(1))".

2 Critical configurations in IR"

To set a good lower bound for the chromatic number of a graph is a notoriously
hard problem. D. G. Larman and C. A. Rogers [39] generalized the Moser
spindle into a configurational principle. They looked at the inequality
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i.e. the chromatic number of a graph G is at least the number of vertices divided
by the independence number. This led them to the following definition: a set
of M points makes an (M, D)-critical configuration in R™ if any D + 1 of the
M points contain some two points at unit distance apart. (Multiple points are
allowed. Clearly any distance d can play the role of the unit distance. In this
case we say that the configuration is critical for the distance d.) Obviously, the
existence of an (M, D)-critical configuration in R™ implies x(R") > M/D. All
lower bounds for x(IR™) that I know of come in this way. However, Larman
and Rogers [39] (based on earlier work of Hadwiger [35] and D. E. Raiskii [51])
proved a much stronger theorem:

If there exists an (M, D)-critical configuration in R" (n > 2), then in any
partition of R™ into fewer than M /D classes, one class exhibits all positive real
numbers as distances between some of its points.

For n = 2, the best known (M, D)-critical configuration is the Moser spindle
yielding M/D = 3.5. Although there is no improvement on the upper bound
x(R?) < 7, it is remarkable that Stechkin [51], D. R. Woodall [62], and A. Soifer



[62, 53], found “better and better” partitions of the plane into six sets, such that
none of the six sets exhibits all positive real numbers as distances between some
of its points. In view of the cited theorem of Larman and Rogers, this means
that there is no (M, D)-critical configuration in the plane with M/D > 6.

Larman and Rogers paid much attention to constructing good critical con-
figurations in low dimensions, and many of the critical configurations that they
discovered are still the best ones in the respective dimensions. I repeat here
those constructions.

The half-cube is a (16, 2)-critical configuration with critical distance v/2 in
R®, its points are the 0-1 vectors of length 5 with even sum. The 56 vertices
7-dimensional Gosset polytope can be obtained by putting signs in all the 8
ways to the characteristic vectors of the lines of the Fano plane. This is an
(56, 4)-critical configuration with critical distance 2 in R”.

The Moser—Raiskii spindle is an (n? + 2n — 1, n)-critical configuration with
critical distance 1 in R"™. This is an n-dimensional generalization of the Moser
spindle, its construction is the following. Take a regular simplex in R" with side
1, specify one of its vertices, the top of the simplex, and reflect the point into
the opposite face to obtain the bottom point. The resulting (n + 2) vertices,
including the bottom, make a needle. Take n needles whose bottoms coincide,
and whose tops make a regular simplex of side 1. Take the common bottom
with multiplicity (n — 1).

The half-cube spindle and the special Gosset spindle can be defined by a
further generalization of the spindle construction. Let us be given a C (M, D)-
critical configuration in R™ with critical distance d, such that C is on a sphere of
radius 7. If » < 2d/+/5, then S, the spindle of C,is an (M?+2DM — D%, DM)-
critical configuration in R™"! with critical distance d. The description is as
follows. Add a top and a bottom to C in R™™*, such that both the bottom
and the top are distance d apart from all vertices of C, and the top and the
bottom are mirror images of each other with respect to the center of the sphere
containing C. An (M +2)-vertex configuration is obtained, that we call a needle.
Take now M needles whose bottoms coincide, and whose tops make a copy of
C. Take the tops with multiplicity D, the bottom in common with multiplicity
D(M — D), and all other vertices of the M needles with multiplicity one. This
is the spindle S.

If r = 2d/+/5, then T, the special spindle of C, is an (M + 2D, D)-critical
configuration with critical distance d in R"**. Add a top and a bottom to C,
such that their distance from all vertices in C is d, and in addition, the distance of
the top and the bottom is also d. Take the top and the bottom with multiplicity
D, and all other points of C with multiplicity one to obtain the special spindle
T of C.

Now the half-cube spindle is the spindle of the 5-dimensional halfcube, and



the special Gosset spindle is the special spindle of the 7-dimensional Gosset
polytope.They give the best critical configurations that we know in R® and R®.

Larman and Rogers in an appendix of their paper [39] cite an unpublisehed
lemma of Erdés and Vera Sés. This lemma applied in a new context an obser-
vation of Zsigmond Nagy [46] and proved tight bounds on it. The configuration
of Erdés and Vera Sés is the following. Consider in R™ ™ all 0-1 vectors with
exactly three 1’s, so M = (";1) This configuration is on a hyperplane and
therefore admits distance preserving embedding in R". Regarding this as a
critical configuration for distance 2, they showed

n ifn4+1=1mod 4,

n+1 ifn+1=0mod4,
D_{
n—1 ifn+1=2or 3 mod 4.

This configuration gave a quadratic lower bound for x(R"). Erdés conjectured
that x(IR") grows exponentially in n. This conjecture was verified by P. Frankl
and R. M. Wilson [31], who proved a strong intersection theorem for set systems,
which actually generalizes the lemma of Erd6s and Sés. Using this theorem, P.
Frankl and R. M. Wilson exhibited in R", in particular among its 0-1 vectors,
an (M, D)-critical configuration with M/D > (1.2 4+ o(1))™.

The Frankl-Wilson construction is the following: take any prime p < n/2

and consider in R" " all 0-1 vectors with exactly 2p—1 1’s, so M = (;;tll). Re-

garding this as a critical configuration for distance 1/2p, they showed D < (Ziri)
This configuration is on a hyperplane again, and therefore admits distance pre-
serving embedding in R". Note that the Nagy—Erd6s—T. Sés construction is a
special case for p = 2, giving slightly improved bounds on D in this special case.

This Frankl-Wilson intersection theorem and construction is also the basis
of two other breakthrough results. One is the best constructive lower bound
for the Ramsey number R(k,k) given in the same paper. The other is an
unexpected counterexample to the Borsuk conjecture by J. Kahn and G. Kalai
[38], who observed that the Borsuk problem can be “translated” by a surprising
transformation into a critical distance problem. Recently A. M. Raigorodskii
[49, 50] made a stronger counterexample to the Borsuk conjecture, which already
works in 561 dimensions, and had an (M, D)-critical configuration in R" with
M/D > (1.236 4 o(1))™. This configuration, however, did not beat the old ones
in low dimension.

3 The measurable chromatic number

One cannot apply (1) directly to the unit distance graph in R". However, a
substitute can be found if we restrict our interest to colorations of R"™ with
Lebesgue measurable color classes. Let the measurable chromatic number of



R™, x™(R"), denote the least number of colors of a good coloration using
Lebesgue measurable color classes. Clearly x(R™) < x™(R"). Let us define a
substitute for the independence number as

™ = su imsu 7)\()(03"(7”))
m(R )_XQBI:(T)IT—)OOP A Bn(r)) ®

where \ is the n-dimensional Lebesgue measure, B, (r) is the ball of radius r
around the origin in R", and X is a Lebesgue measurable subset of R", such
that no two points of X are at unit distance apart. Then we have x™(R") >
1/mi(R™). A section was devoted to mi(IR?) in the problem collection of W.
Moser [45].

The study of x™(R") started with K. J. Falconer’s proof [28] of x™(R") >
n+ 3. Note that in particular x™(R?) > 5. Tt is obvious that m;(R™) < D/M,
if an (M, D)-critical configuration exists in R™. For n = 2, the best lower
bound is 0.2293 < ml(]R2). The construction is just a slight modification of
packing disks of radius 1/2 into the vertices of a triangular lattice with edge
length 2. Namely, the construction packs tortoises of diameter 1 into the vertices
of a triangular lattice with edge length slightly less than 2. A tortoise is the
union of a regular hexagon of diameter 1 and a disc centered at the midpoint
of the hexagon with radius slightly less than .5. H. T. Croft [16] attributes this
construction to L. Moser.

Fig. 4: A tortoise.

Erdds conjectured that ml(]RQ) < .25. If this conjecture is true, it gives a
new proof for y™ (]RQ) > 5. It is easy to see that for any finite subgraph G of the
unit distance graph of the plane on n vertices, a(G)/n > m;(R?). Therefore
Erdés also asked how small a(G)/n can be for such graphs.

For large n, I do not know of lower bounds to m;(R"™) better than the
reciprocal of the best upper bound for x™(R™) (which is always the best known
upper bound for x(R™) as well). T proved m;(R?) < 12/43, m,(R?®) < 7/37,
m1(R*) < 9/70 in my thesis [58]. Later in joint work with Wormald [60] we
introduced a configurational principle to estimate m;. Using a computer search
for configurations we estimated m; for n < 24. We obtained e.g. Xm(R24) >
933 (only x(R?*) > 178 is known), and x™(R*) > 8 (improving the Falconer



bound). I give more details in the next Section. Even for n = 2,3,4, a tiny
improvement was achieved on m;. Larman and Rogers, and even earlier L.
Moser [39], conjectured that m;(R™) < 27™. This would imply x"(R") > 2".

The table below, following [39] and [60], summarizes the best lower bounds
for the chromatic number and the measurable chromatic number in low di-
mensions. The fourth column gives the value of (M, D) for the best known
configuration, while the fifth columns describes the configuration.

n=|x(R")>| x™(R") > (M, D) Configuration

2 4 5 (7,2) Moser spindle

3 5 6 (14,3) Moser—Raiskii spindle

4 6 8 (23,4) Moser—Raiskii spindle

5 8 11 (16,2) Half-cube

6 10 15 (316,32) Half-cube spindle

7 14 19 (56,4) 7-dimensional Gosset polytope
8 16 30 (64,4) Special Gosset spindle

9 16 35 (64,4) Special Gosset spindle

10 19 45 (165,9) Erd6s-T. Sés configuration
11 19 56 (220,12) Erd6s—T. Sés configuration
12 24 70 (286,12) Erdds-T. S6s configuration
13 31 84 (364,12) Erd8s-T. Sés configuration
14 35 102 (455,13 ) Erdés—T. Sés configuration
15 37 119 ((156), (126)) Frankl-Wilson configuration
16 67 148 ((157), (127)) Frankl-Wilson configuration
17 56 174 ((158), (128)) Frankl-Wilson configuration
18 68 194 ((159), (129)) Frankl-Wilson configuration
19 82 263 ((250), (220)) Frankl-Wilson configuration
20 97 315 (%), (%)) | Frankl-Wilson configuration
21 114 374 ((3)), (%)) | Frankl-Wilson configuration
22 133 526 ((253), (223)) Frankl-Wilson configuration
23 154 754 ((254 ), (224)) Frankl-Wilson configuration
24 178 933 (%), (%)) | Frankl-Wilson configuration

A theorem of Erdés and N. G. de Bruijn [9] asserts that if an infinite graph
has finite chromatic number, then its chromatic number is the maximum chro-
matic number of its finite subgraphs. This result depends on the Axiom of
Choice. Under this theorem, the value of x(R™) is achieved by a finite sub-
graph of the unit distance graph. This is not necessarily true for x™(R"),
although nobody has an example with x(R") # x™(R").



4 Problems related to the chromatic number of
Rn

The first type of generalization that I consider here allows more than one dis-
tances. Define the H-distance graph with V' = R" and join two vertices if their
distance belongs to a set H. Denote the corresponding chromatic numbers by
xm and x7, and the analogue of the independence number by mpg, if X is an
independent set in the H-distance graph in (2).

Just for n = 2, Erdés asked about the behavior of f(k) = max| g xrr (R?).
He knew that f(k)/k > cy/logk, but nothing better is known. The related
question on the independence number is inf|g—x mH(]R2). For k = 2, I proved
that inf g _o my(R?) < m{lﬂ/g}(]RQ) < 2/11, and also proved that if a/b >
1.401, then my, 4 (R*) < 1/4 [57], by averaging an inclusion-exclusion formula
over the group of rotations.

Combining some sieve optimizing arguments from [60] with my original paper
[67], the general theorem is the following:

Let Py, P, ..., P, be a configuration of n points in the plane. Let H denote
a finite set of positive numbers, and h = min H. Using the notations p =
{Gg) @ <3y [BB] < /2, [PiPj| ¢ HY| and ¢ = [{(i,7) : @ <J |PBy] >

h/2, [PP}| ¢ HY|, one has my(R?) < 2l where ¢ = [221],

Now the the upper bound my, 5} < (R?) < 1/4 claimed above follows from the
existence of the following configurations:

Fig. 5 : Configuration providing upper bound for Mmyq,p} if %\/ 5423 > g > % (\/ 13 4+ 15) .
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Fig. 6: Configuration providing upper bound for myqp} if g > % 542

Unfortunately, I was never able to find a configuration bounding m 4 .} for
independent a, b, ¢ in a non-trivial way using this configurational principle.

These problems turn even harder if H is infinite. I conjectured in my very
first paper [56] that if H is not bounded from above, then mg(R?) = 0. Erdés
liked this conjecture and made it known. This conjecture was proved first by
Y. Katznelson and B. Weiss [33], then by K. J. Falconer and J. M. Marstrand
[30], and subsequently a generalization was proved by J. Bourgain [7].

A well-known theorem of Steinhaus asserts that if X is a set of positive
Lebesgue measure in R", then there is an € > 0 such that any translate of the
set X to a distance at most € intersects the set X. Therefore, if inf H = 0, then
mg(R?) = 0. I made the following “continuity conjecture”: if inf H = 0, then
limg_,0 mHm(57oo)(]R2) = 0. This conjecture was proved by Falconer [29].

A second type of analogue is the following. Change the vertex set from R"
to a subset of R". In particular, much attention have been paid to the sphere
5™ 1 of radius 1 in R™.

Consider H = [«, 2] for 0 < o < 2 and the distance graph that H defines on
Sm~1. This graph, the Borsuk graph, was introduced and studied by Erdés and
A. Hajnal [25]. It follows from Borsuk’s Theorem [6] (and in fact, is equivalent to



it), that xz(S™ ') > n+ 1. Combining this with the Erdés—de Bruijn Theorem
[9] on the chromatic number of infinite graphs, one obtains one of the earliest
constructions for finite graphs with high chromatic number and high odd girth.

Erdés and R. L. Graham conjectured, that the chromatic number is already
large if one uses only the single distance « instead of the whole H. This was
proved by Lovdsz [42], who showed that for any /2(n+1)/n < a < 2 (ie.
when o exceeds the side length of the regular simplex inscribed the sphere),
n < Xa(S™ 1) < n+1, and for every n > 2 showed the existence of infinitely
many a’s with x,(S"™!) = n + 1. Lovdsz did not use critical configurations,
he used his topological framework providing lower bounds for the chromatic
numbers of graphs. This framework was actually developed in order to set
a tight lower bound for the chromatic number of the Kneser graph, which is
the “discrete analogue” of the Borsuk graph [41]. For a smaller «, Frankl and
Wilson gave exponential lower bound for x,(S™~!) [31].

The measurable analogue of the independence number generalizes for spheres
(n—1)

as well. Let my; ~/(r) denote the supremum of the independence ratios
(n=1) () — A(X)
m r)= sup ———, 3
L I EEI0) ?)

where ) is the (n — 1)-dimensional Lebesgue measure, S™!(r) is the sphere
of radius r around the origin in R", and X is a Lebesgue measurable subset
of S"~1(r) such that no two points of X have a distance belonging to H. N.
C. Wormald and I [60] discovered a recursive formula to give upper bounds on
mg_?)(r) and used this technique for r = oo to give upper bounds to m;(R")
and lower bounds to x™(R"™). Our configurational principle is the following:

Let Py, P, ..., P,, denote a point configuration on S"!(r). Define

n—2 - o
5= Y >(|PZ-PJ-| 1—<|PZ-P]-|/27~>2),
Firlen

with m\7~?(0) = 1. Then, with t = [22],

m(y < L2)

Another well-studied problem is, how heavily the chromatic number of the
plane depends on subgraphs of the unit distance graph having small girth. Erdés
asked if there is any triangle-free subgraph of the unit distance graph in R?
which is not 3-colorable. N. C. Wormald [63] showed the existence of such a
graph on 6448 vertices, later P. O’Donnell [17] on 56, finally K. B. Chilakamarri
[11] on 47 vertices. Recently O’Donnell [18] announced the construction of
arbitrary large girth subgraphs of the unit distance graph in R? which are not
3-colorable.
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5 The problem of distinct distances and unit
distances

Erdés says [23] “My most striking contribution to geometry is, no doubt, my
problem on the number of distinct distances”. This was the following pair of
problems, posed in 1946 [20] : what is f(n), the maximum number of unit
distances among n points in the plane; and what is g(n), the minimum number
of distinct distances among n points in the plane? Erdés offered USD 500 for
the magnitude of any of these functions. It is clear that

gl > (). (@

Erdés showed [20] that n'*¢/ 108198 " < f(n) and conjectured that this was about
the true magnitude of f(n). He proved that f(n) is at most cn®/2. S. Jézsa and
E. Szemerédi [37] improved this bound to o(n®/2), J. Beck and J. Spencer [5]
further improved the bound to n'#*-. Finally, Spencer, Szemerédi, and Trotter
[54] achieved the best known bound, cn*/3.

Erd8s showed [20] that g(n) < cn/+y/logn by considering the lattice points
in a large disk, and conjectured that this was about the true magnitude of g(n).
Erd6s showed the lower bound g(n) > /n, L. Moser [43] showed n2/3, F. R.
K. Chung [12] showed n°/7, Beck [4] showed n°®/81=¢_ finally Chung, Szemerédi
and Trotter [13] showed n*//(logn). As they remarked, they did not prove
the existence of a single point from which so many distinct distances start.
For this modified problem the best known result was c¢n®/4 by K. Clarkson, H.
Edelsbrunner, L. Guibas, M. Sharir and E. Welzl [14]. The problem of distinct
distances has already been studied in Minkowski spaces [55].

The following result on crossing numbers of graphs was conjectured by Erdds
and R. K. Guy [24, 34], and later independently proved by F. T. Leighton [40],
and M. Ajtai, V. Chvétal, M. Newborn and E. Szemerédi [1]:

Any simple graph on n vertices and m > 4n edges requires at least .01m?> /n?

crossings if drawn on the plane.

I gave simple and transparent proofs [59] for f(n) < cn®/3 and g(n) > cn*/®
using this theorem. For the latter estimation, I find c¢n*/® distinct distances
starting from a particular point. Unfortunately, my method cannot give a better
upper bound on f(n), since Erdés, D. Hickerson and J. Pach [26] gave cn®/? unit
distances among n points on a sphere of radius 1/ V2. Any direct application of
my method to the plane would work on the sphere as well.

My method also gave a simple and transparent proof to the following Sze-
merédi-Trotter theorem [61, 3] on incidences:

For n points and [ lines in the Euclidean plane, such that n < % and | < n?2,
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the number of incidences among the points and lines is at most c¢(nl)?/3.

This theorem, originally conjectured by Erdés and Purdy [22], is a fundamental
result in discrete and combinatorial geometry. It is known to be tight in its
whole range [3, 47]. Other proofs for this theorem are in [14, 32]. An important,
frequently used corollary of the theorem is the following:

Given n points and [ lines in the Euclidean plane, such that for some 2 <
k < \/n, every line is incident to at least k of the points. Then | < cn?/k3.

It is worth noting that J. Beck, who proved a somewhat weaker result than
this, used the weaker result to resolve a number of open problems in combina-
torial geometry [3].

D. de Caen and I [10] proved the following stronger theorem: the number of
3-paths in the incidence bipartite graph of such n points and [ lines is at most
cnl. This theorem implies the Szemerédi—Trotter theorem on incidences through
Atkinson’s inequality. D. de Caen and I made an even stronger conjecture,
that the number of 6-cycles in the incidence bipartite graph is at most nl. E.
Moorehouse offered USD 50 for a counterexample to this conjecture.

It is a curious fact why the Szemerédi—Trotter theorem on incidences does
hold. For an affine geometry over a finite field the theorem badly fails if we count
incidences among all lines and all points. For which fields does the Szemerédi—
Trotter theorem on incidences hold? In particular, Elekes asked if it holds in
the complex geometry. Recently, G. Elekes and Csaba Té6th [19] gave a positive
answer to this question. Their proof gave step-by-step a complex analogue of
the original proof of Szemerédi and Trotter [61].

Functions f(n) and g(n) can be investigated in dimension d > 2 as well. For
d = 3 the best bounds are cn*/®loglogn < f3(n) by Erdés [21] and f3(n) <
n3/2+o(1) by Clarkson et al. [14]. It follows from (4) that gs(n) > nl/2-°(),
According to the Lenz construction, f4(n) > cn? for d > 4. Recently Braf§ [8]
determined f4(n) exactly in dimension d = 4.

For estimating g4(n) in higher dimension d, Erdés [20] had the upper bound:
ga(n) < en?'?. The best current lower bound is ent1 oM < ga(n), as d is fixed
and n — co. This lower bound is sketched in [47] p. 197, using g3(n) > n'/2-°(1)
from [14] as base case for an inductive proof.

The Szemerédi—Trotter theorem has variants for other curves than straight
lines, in this case the degree of freedom of the curve family determines the
exponent, see J. Pach and M. Sharir [48].
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