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Abstract

We prove that for every connected 4-colourable graph G of order n and minimum
degree 6 > 1, diam(G) < 3—? — 1. This is a first step toward proving a conjecture of
Erdds, Pach, Pollack and Tuza [4] from 1989.

1 Introduction

Let G = (V, E) be a simple, finite, connected graph on n vertices, with minimum degree
0 > 2 and diameter diam(G). The natural problem of bounding the diameter of a graph
in terms of its order and minimum degree was solved by several authors [5, 4, 6, 7], who
independently proved that, for fixed d > 2 and large n,
diam(G) < " 4 0(1). (1)
To+1

In 1989, Erdés, Pach, Pollack, and Tuza [4] showed that this upper bound on the diameter
can be improved if G is triangle-free, or if G does not contain a 4-cycle. Their results were
extended in [1] to graphs not containing a subgraph isomorphic to the complete bipartite
graph Ky g, for s > 2, and in [2] to graphs not containing a complete subgraph K3 3.

In the same paper [4], Erdés, Pach, Pollack, and Tuza also conjectured that the upper
bound (1) can be improved further if G does not contain a large complete subgraph Kj:

Conjecture 1 Letr,d > 2 be fized integers and let G be a connected graph with n vertices
and minimum degree §.
(i) If G is Ko.-free and 0 is a multiple of (r — 1)(3r + 2) then, for large n,

2r — 1)(3r +2)
(2r2 —1)0

diam(G) < +O0(1).

(ii) If G is Kop41-free and 0 is a multiple of 3r — 1, then, for large n,

3r—1
rd
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diam(G) <

n+ O(1).




They also constructed graphs showing that, if the above bounds hold, then they are
sharp, apart from an additive constant. For r = 2, which is relevant for our paper, the
graph construction is the following. Let X; and Y; be disjoint sets of vertices, such that
| Xo| = |Yo| =35/5 = | X4| = |Yy| and for 0 < i < d, | X;| = |Yi| = §/5; and join vertices of
X; to the vertices of Y;, and vertices of X; UY; to vertices of X;_1 UY;_1 and X;11 UY;41

So far, no progress on the above conjecture, even for specific values of r, has been
reported. In this paper, we consider a slight weakening of the above conjecture for Ks-free
graphs. We show that the conjecture holds for all § > 1 under the somewhat stronger
assumption that G is 4-colourable.

2 Proof of theorem

Custom-taylored Bonferroni-type inequalities have a large literature, see [3]. The following
variant will be central to our proof.

Lemma 1 Let {A; | i = 1,2,...,d} be a finite set system. If no element of J;cr Ai s
contained in more than 4 sets among the A;, then

d
=1

1<i<d 1<4,j<d 1<i<j<k<I<d

Proof. Let x € U;c; 4;- Then x contributes exactly 3 to the left hand side of the
above inequality. If x is in p sets A; then x contributes 2p — (’2’) + (Z) to the right hand
side, which for 0 < p < 4 is at most 3. Summing this over all x yields the lemma. O

We use standard notation. Specifically, we denote the vertex set and the edge set of a
graph by V and F, respectively. The neighbourhood of a vertex v is denoted by Ng(v).
If P =wvjv9,...v; is a sequence of vertices, and vg, vp+1 are two further vertices, then we
denote the extended sequence vgvy ... vkvVE+1 by voPvug1.

Theorem 1 For every connected 4-colourable graph G of order n and minimum degree

6>1,
on
diam(G) < — — 1.
(&) = 26
Proof. Let d := diam(G). We can assume that G is edge-maximal, i.e., addition of
any edge decreases the diameter or increases the chromatic number. It suffices to show
that there exists a sequence of vertices P = apag ... aq of G such that, with A; := Ng(a;),
1=0,1,...,d, we have

Z |A2ﬂAJ| — Z |AiﬂAjﬂAkﬂAl| < 2n. (2)
0<i<j<d 0<i<j<k<iI<d

since then, by |4;| > ¢ and Lemma 1,

d
=0

v

d

> 2Z‘AZ’— Z ’AZQA]’—F Z ]A,-ﬁAjﬁAkﬂAl]
1=0 0<i<j<d 0<i<j<k<i<d

> 2(d+1)0 —2n,



which implies d < g—g — 1, as desired.
For a subset V' of V' we define g(P, V') to be the contribution of V' to the right hand
side of (2), i.e.,

g PV )= > |An4agnVI— Y JANANANANV
0<i<j<d 0<i<j<k<i<d

So equation (2) becomes g(P, V) < 2n. Often we need only the first sum of the right hand
side above, so we also let

fPV)= > 404NV

0<i<j<d

Note that g(P, V') < f(P,V'). Let u and v be two vertices at distance d, let V; be the set
of all vertices at distance 4 from wu, and for 7« < jlet V;; := V; U Vi1 U...UVj. Denote
by x; the number of colours that occur in V;. Note that x; = 1 implies y;4+1 < 3 since no
vertex of V1 can have the colour of the vertices in V;. Note that all vertices in V; of the
same colour have the same neighbourhood by the assumption on edge-maximality.

Consider the sequence C = xox1 - .- Xx4- We will provide an algorithm that shows that
there exist integers 0 = ¢; < ¢ < ... < ¢¢ = d + 1 such that, if we let r = ¢; and
s = ¢;+1 — 1, each of the t — 1 segments S; = Xy Xr+1Xr+2---Xs is of one of the 4 types
described below. (For shortness, we sometimes also say that V;. 5 is the corresponding type
as well.)

Typel: xp =Xo4+1=-..=Xs=1,8>71;

Type 2: x > 1 and Xp41, Xo42,---5Xs = 2, s > r+ 1. If s < d then ye11 =1. If x, > 1,
then r > 1 and x,—1 = 1. If s =7+ 1 then (xo, xr+1) # (1,3);

Type 3: s — r is even and positive; x, = Xr+2 = Xr44 = ... = Xs = 1 and x,41 = 3 and
Xr+3s Xr+5y -5 Xs—1 > 2)

Type 4: s=r=d, xr > 2 and x,—1 = 1.

During the algorithm we will consider the sequence x4 Xar1 - - - Xp that still needs to be
processed with a < b; initially ¢ = 0 and b = d. The preliminary step decides whether a
sequence of type 4 will be used at the end, and the final step will take care of processing
the ¢;’s for the type 4 sequence. After the preliminary step V, ; will have the property that
Xa =1, b=dor b=d— 1 depending on the existence of a type 4 sequence, and if y; # 1
then yx;_1 # 1. This property will be maintained during the processing step, where there
only the value of a is changed. By contraposition, in the processing step the set V, ; must
satisfy the conditions that if x3_1 = 1 then x; = 1. Some remarks that may be necessary
to see the correctness of the algorithm are included between // dividers and set in italic.

The description of the algorithm is self-explanatory:

PRELIMINARY STEP: a < 0; ¢; < 0; m < 2; DONE<FALSE;
IF (xq>1 and x4-1 =1) THEN {b <« d— 1} // This means xq will be type 4.//

PROCESSING STEP: REPEAT UNTIL DONE=TRUE



{IF (a=0b or xat+1 =1) // Removal of type 1 sequence.//
{

LET c¢,, BE THE LARGEST INTEGER SUCH THAT FOR ALL ¢ : a < i < ¢ WE
HAVE x; =1; //Clearly ¢cyy — 1 >a or ¢y, =a=5>.//
IF ¢, =b THEN {¢,, < b+ 1; DONE«<TRUE} // V,; will be type 1.//
ELSE // Vacn—1 will be type 1, xc,, =1.//{a — ¢y m —m+1}
¥
ELSEIF (Xa+1 #3 OR Xat2 # 1) // Xat1 > 1; removal of type 2 sequence.//
IF (x;# 1 FOR ALL i:a <i<b) THEN {¢n < b+ 1; DONE<—TRUE}
// Vap will be type 2.//

ELSE // now some x; is 1.//
{LET ¢, BE THE LEAST INTEGER SUCH THAT (¢, > a AND x.,h = 1);

// Vaem—1 will be type 2, xc,, =1.//
a4 Cp; M Mm-—+ 1}

ELSE // Now Xa+1 = 3 and Xq+2 = 1; removal of type 3 sequence.//
{SET k TO THE LARGEST INTEGER SUCH THAT FOR ALL i:1 <4 <k WE HAVE
(Xa+2i =1 AND Xqy2i—1 > 1) ¢ —a+2k+1; // Clearly k > 1.//
IF ¢, = b+ 1 THEN DONE«<TRUE // Vg, will be type 3.//
ELSE // Vaat2k = Vae,—1 will be type 3; but x.,, may not be 1.//

IF (x; =1 FOR SOME i: ¢y <4 < b)
{SET w TO THE LEAST INTEGER SUCH THAT (w > ¢ AND x,, = 1);
// Clearly w # ¢, + 1, as this would contradict the mazimality of k.//
IF w = ¢y THEN {a < ¢p; m «— m+1} // continue as x.,, =1.//
ELSE //Xem # 1, Ve, w—1 will be type 2 since w > ¢y +2, X = 1.//
{emt1 — w; @+ cpi1; m—m+ 2}

}

ELSE DONE<TRUE //In this case there are no more 1’s among the x;’s.
From xc¢,,—1 =1, we get b—1> ¢y, — 1 and Vg,  is type 2.//

} // End of case Xay1 =3 and Xay2 = 1//

} // End of repeat loop.//

FINAL STEP: IF ¢, =d+1 THEN {t < m} ELSE {t —m+1; ¢ «—d+ 1}

Consider a segment S; = X, Xr+1...Xs of C of type 1, 2, 3, or 4. If r > 0, let 8,1 € Vp,—1
be arbitrarily fixed. We will show that for this arbitrarily fixed choice of §,_1 (if such a
choice was made) there exists a sequence of vertices P,y = o,y ... g such that

Property (i): V; (V) contains no vertex of P, s, except possibly o, (as),

Property (ii):

(a) If r > 0 and s < d then for all G541 € Viy1,4 using P’ = 5,1 Py 5541 we have

g(P', Vis) < 2|Vl
(b) If r > 0 and s = d then using P’ = 3,1 P, s we have g(P',V,5) < 2|V, 4|.

4



(a) If r = 0 and s < d then for all Ss41 € Vsi1 4 using P’ = P, ;0541 we have
g(P', Vys) < 2[Vpsl.

(d) If r =0 and s = d then g(P,V, ) < 2|V, 4|.

If such sequence selections can indeed be made, we will achieve our goal because of
the following. Recall that C' is subdivided into t — 1 segments, with the ith segment being
Si = XeiXeit1Xei+2 -+ Xeipr—1-

Since ¢; = 0, we can choose P, .,—1 according to properties (i)-(ii). Once the sequence
P, | c;—1 has been chosen for some i : 2 < i < t, choose the sequence P, 1 for
Be,—1 = Qe,—1 according to properties (i) and (ii).

The sequence P = ag,a1,...,04 = Peycy—1FPey -1 FPe, 1 ,,—1 18 constructed by
concatenating the sequences P, .., 1 in order.

Now if ¢; > 0 and ¢;11 < d (i.e. 1 <i <t — 1), then by properties (i) and (ii) and the
fact that the value of g( -,V 5) is uneffected by any vertices not in V;_; 541, we have that

75Ci+1—

g(P’ ‘/Ciyci+1_1) = g(aci_1PCi7Ci+1_1aCi+l7%i,ci+1_1) < 2|V0i70i+1—1|'

Similarly, we get that g(P, Ve, ¢, 1—1) < 2|Ve, cipy—1] forall i : 1 <4 < t. Therefore

t—1 t—1
g(Pv V) = ZQ(P, ‘/Ci,ci+1_1) < 22|V0i,0i+1—1| = 2|V|’
i=1 i=1

as desired.

So what remains to show is that for each segment S; = x, ... xs of type 1,2,3 or 4 we
can choose the appropriate sequence P, s satisfying properties (i)-(ii). We have already
remarked that the value of g( - ,V, ;) is uneffected by any vertices not in V;_1 411, and
therefore it is enough to assume that 8,1 € V,_; and 8,41 € V41 instead of 8,1 € Vo ,—1
and fs41 € Vsi1,4 in the proof of property (ii).

If »r > 0, fix 8,_1 € V,._1 arbitrarily. We consider each type of segment separately. We
will use a,—1 = B,—1 and as41 = Bs4+1 for ease of notation below.

TyPE 1: For ¢ = r,r + 1,...,s choose a vertex a; € V; arbitrarily and let P, =
Qp,Qryl,...,0s (so a; = a;). Clearly, P, satisfies property (i) above. First assume
that 7 > 0 and s < d. Choose ast1 € Vspq arbitrarily and let P’ = a,_1, Py, as4+1. Since
fori € {r,r 4+ 1,...,s} the distance layer V; has only one colour class,

f(P', Vi) = |N(ai—1) N N(a;) N Vi| 4+ [N(a;) N N(aip1) N Vi| + [N(ai—1) N N(ais1) N Vi
< 0+0+[V, and

PP\ Ves) = X f(PL Vi) < YOIVl < Vi,
Hence g(P',V,.5) < f(P',V;s) < |V;s|, independently of the choice of fs41, and so Py
satisfies property (ii) as well.

Ifr=0<s<dthen P = P, s, as41, and the above estimate only changes when i = 0;
and f(P',Vy) = |N(a;) N N(a;+1) N V;| = 0. It is easy to see that the statement works in
all other cases (0 <r <s<dor0=rand s=d) as well.



TYPE 2: For i = r,...,s choose one vertex each from the largest two colour classes of V;.
(If x, = 1 then we choose a vertex of V. twice.) By edge maximality the graph induced
by these vertices contains two geodesics P s = ar, Gry1,...,0s and Qs = by, byy1,...,bs
from V. to Vy that are vertex disjoint, except possibly for the first vertex. Clearly, P, g
and @, s satisfy property (i) above.

Assume first that 0 < r and s < d. Let as4+1 € V41 be arbitrary. Note that by xs41 =1
all vertices in V41 have the same neighbours. Therefore, what follows is independent of
the choice of asy1. Let P/ = a,_1 P sas41 and Q' = a,—1Qy sas4+1. We show that for each
1:r<i<s

F(P' Vi) + F(Q', Vi) < 4|Vi]. (3)

For ease of notation b,_1 = a,—1 and bsy1 = asyr1. Consider a distance layer Vj,
r < i <s. Forj=1,23,4let x; be the number of vertices of colour j in V;. We
can assume w.l.o.g. that x1 > z9 > z3 > x4, and that a; and b; have colour 1 and 2,
respectively. Let a;—1,b;—1,a;11,b;+1 have colour j, k,[, m, respectively.

Assume first that y; > 1. Then a;_; is adjacent to a; and b;_; is adjacent to b; (by
construction if ¢ > r and by the fact that x, > 1 implies x;—1 = 1if i =), so j # 1 and
k # 2. If a; (or b;) is not adjacent to a;+1 (bj+1), then we must have i = s, which implies
that a;11 = b1 s0l=m

Therefore

f(P/, Vz) = \N(ai_l) N N(a,) N VZ‘ + ]N(a,) N N(CLZ'_H) N VZ’ + \N(ai_l) N N(aHl) N VZ‘
= (Vil =21 — ;) + [N(a;i) N N(ai+1) N Vil +[N(ai—1) N N(ai+1) N Vi

If in addition j # [, then |N(a;—1) N N(aj+1) N Vi| = |Vi| — z; — .
The following 3 cases might occur: j # 1 # 1, j # 1 = 1 (in which case i = s and
l=m=1)and j=1.
If j #1# 1 then z; + x; > x3 + 24 and so
fPLVe) = (Vil =21 — ) + (Vi =21 — @) + (Vi — 25 — )
3|Vil = 2(x1 + xj + ap) < 3|Vi| — 2(x1 + 23 + x4)

If j #1 =1 then
FPLV) = (il = a1 — ) + (Vi = 21) + (Vi = 2 — 21)
= 3|Vi| — (3z1 + 2x;) < 3|Vi| — 32y
If j =1 then
FPLV) < (il = an — ) + (il = 21 — ) + (|Vi] = 5) = 3|Vi| — (221 + 3;)
In summary, we have for P’ (and similarly for Q') that

(
Vil = 2(x1 +x3+x4), ifj#I#1
{3|V|—3SE1 ifj#l=1
3|Vi| — (221 + 3x5), ifj=1
3|Vi| = 2(wo + w3 + 4), ifk#m#2
{3“/‘ 379, ifk#m=2
3|Vi| — (2z2 + 3xy), ifk=m

fPLVi) <

f(Q,v;) <

6



Since we always have f(Q’,V;) < 3|V;| — 2z, for j # 1 # 1 we get
FP Vi) + f(Q, Vi) < 3|Vi| = 2(x1 + w3 + 24) + 3|Vi| — 220 = 4|V,

as claimed. This statement follows similarly if k # m # 2.
If j 21 =1, then | = m = 1. Therefore we are done when k # m, so we may assume
that k = m = 1. Using 61 > 2(z1 + x5 + 24) we get

PPV + (@ Vi) < 3|Vil — 3ay + 3Vi| — (222 + 321) < 6V| — (621 + 202)

<
< 6|Vi| —2(x1 + z2 + 23 + 24) = 4|V},

as claimed. A similar logic works when k # m = 2.
So the only case that still needs to be examined is j = [ and k£ = m, when

F(P Vi) + £(Q, Vi) < 6|Vi| —2(x1 + 22 + 25 + 2)

If j # k then, as before, z; +x > x3+ x4 and we get that f(P',V;)+ f(Q', V;) < 4|Vi].

If j = k, then we must have x;_1 = x;+1 = 1, which implies that ¢ = s = r + 1. Since
the sequence is type 2, this must mean that x; = 2, so 3 = x4 = 0 and |V;| = z1 + 2.
Therefore in this case also f(P',V;) + f(Q',V;) < 4|V;|, as claimed.

So the statement is true when y; > 1. In the case when x; = 1 (and so i = r) we get
F(P, Vi) + f(Q, Vi) < 2|Vi|, as before.

If r = 0 or s = d then the corresponding estimates for f(P', V), f(Q',V,), f(P',Vj)
and f(Q',Vs) can only decrease.

We can assume, without loss of generality, that f(P',V,) < f(Q',V;s) and thus
g(P',\V,s) < f(P',V,s) < 2|V, 5|. Hence P, satisfies property (i) and property (ii), as
desired.

TYPE 3: We can assume that, possibly after recolouring, the vertices in V. UV,10UV,14U
... U Vs all have the same colour and that this colour does not occur inbetween. We
consider two cases, depending on whether s = r + 2 or s > r 4+ 4. Initially, we consider
s < d only. Let as11 € Viy1 be arbitrary. Note that since x; = 1, any member of Vj is
adjacent to asq1.

Case 1: s > r +4.
Fori=r+41,r+3,7r+5,...,s—1let al,a? € V; be vertices that belong to the largest and

177
second largest,respectively, colour class of V;, and for i = r,r+ 2,7 +4,...,s let a; € V.

Define the following sequences of vertices, each with s — r 4 1 vertices:

1 1 1
Pr,s = QrQp i 1Ar420p 1 304 40r 450946 -« - As—10g_10s,
_ 1 2 1 2 1 2 2 1 2
QT’,S - aTa’r—i—lar+1ar+3ar+3ar+5ar+5 s lg_00g 1051,
_ 1 2 1 2 1 2 1 1 2
RT’,S = Qpy10p 41043001 300 500 5Qp 7. .. Qg 105 10Qs.

Clearly, P, s, Qr s and R, s have the required length and satisfy property (i) above.

Let P' = a,_1,Prs,a541, Q' = ar—1,Qrs,as41, and R' = a,_1, Ry 5,a541. We first
consider f(P',V;5). Let i € {r,r + 1,7 +2,...,s} with xy; = 3. So a;_1 € V;_1, a} € Vi,
and a;11 € Vir1. Now N(a;_1) N N(a})NV; and N(a}) N N(a;11)NV; are contained in the
union of the two smallest colour classes of V; and thus have at most %|VZ| vertices each,
while N(a;—1) N N(aj4+1) N V; has at most |V;| vertices each. Hence f(P’,V;) < I|Vj| if



Xi = 3. If x; = 2, then similar considerations show that f(P’,V;) < 2|V;|, while x; = 1
implies that f(P’,V;) < |V;|, even when i = r and perhaps r = 0. Hence,

7
F(P' Vis) < (IVel + [Vigal + [Viga + . 4 [V5]) + g(‘VrHH‘ Vet + Vsl +. ..+ Ve l).

Now consider Q'. First let i« = r + 1, so x; = 3. Then N(a;—1) N N(a}) N'V; and
N(a;—1)NN(a?)NV; do not contain vertices in the largest and second largest colour class,
respectively, of V;, while N(a}) N N(a?) N V; does not contain vertices in the two largest
colour classes of V;. Hence f(Q',V;) < 2|Vj| for i = r+ 1. (Were x; = 2, we would
have got f(Q',V;) < |V;|-—this is an estimate that we will need for R’ later.) Similarly
we obtain for i = 7+ 3,7 +5,...,s — 1 that f(Q',V;) = |N(a}) N N(a?) N V;|; therefore
in this case f(Q',V;) < %|VZ| if x; =3 and f(Q',V;) =0if x; = 2. It is easy to see that
f(Q,V,) <3|V, and f(Q',V,) < 3|Vy|. Fori=r+2,r+4,7+6,...,s — 2 each vertex
of V; is in the neighbourhood of exactly four vertices, a}_;,a? ;,a},; and a?,;. Hence
F(Q Vi) = (G)IVil = 6]V;| and g(Q',V;) = 5|Vi|. In total

5) 1
9(Q\ Vis) < 3(IVe| + Vi) + g’Vr-H’ + g(\Vr+3! + |Vias| + [Vesr| + .o+ [Vsz1|)
+5(|Vesa| + [Viga| + [Vigo| + . + [Vizal).

Similarly we obtain

5) 1
g(R'\ Vi) < 3(|Vel +[Vs]) + g\Vs—ll + g(\VrH’ + Vegs| + [Vegsl + ...+ [Vs—s])
+5(| Vsl + [Vigal 4+ [Vigs| + ... + [Viza).

Note that each of the above three inequalities hold irrespective of the choice of as11.
moreover, they also hold when s = d. Now consider the weighted average of g(P’,V ;)
(counted six times) and ¢(Q’, V;s) and g(R',V, s) (counted once each). By the above

69(P',V,s) + 9(Q", Vis) + g(R', Vys)
< 12(IVe| + [ Vs|) + 16(|Viga| + [Viga] + [Vigs| + - + [Vis—2])
44
F16(| Vg1 | + [Vsa]) + g(
< 16|Vl

Vits| + [Vigs| + |Vegr] + ... 4+ |Vs—3])

Hence at least one of P, g, @, s and R, ¢ satisfies also property (ii) above, as desired.
Case 2: s=1+2.

Then (X, Xr+1, Xr+2) = (1,3,1). Choose vertices a, € V;, ar12 € V,yo and a§+1,a3+1 €
V41 from the largest and the second largest colour class in V., 1, respectively. Let P, =
aral 110r42 and Qs = aral +1a$ +1- Clearly, P, and @, satisfy property (i) above. Let
asy1 € Vsy1 be arbitrary and let P’ = a,_1 P, sas+1 and Q' = a,—1Qy sas+1. Then

7
F(P Vepsa) < Vel 4 5lViga + [Vigal,

)
f(Q/y‘/?",r—IQ) < 3|V}|+§|V}+1|—|—3|V}+2|,



irrespective of the choice of as11. Adding these two inequalities yields
F(P' Vergo) + F(Q, Vipy2) <AVE + 4Vipa] + 4]V,

and so f(P',V,,q2) < 2|V, 0| for all asy1 € Viyr or f(Q,Vipt2) < 2|V, 40| for all
asy1 € Vsy1. Hence at least one of P, s and Q, ;s satisfies also property (ii).

TYPE 4: In this case r = s = d > r Choose a vertex «, € V, arbitrarily and set
P = .. Since x,—1 = 1, we must have (3,_; adjacent to a, and therefore g(3,_1P,V,) <
f(ﬂT—1P7‘/T) - O

d

We remark that there appears to be no straightforward generalisation of the proof of
Theorem 1 to 2k-colourable graphs. However, we expect that the methods presented in
this proof points a way towards a possible proof of such a generalisation.
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