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Abstract

A convex drawing of an n-vertex graph G = (V (G); E(G)) is a drawing

in which the vertices are placed on the corners of a convex n-gon in the

plane and each edge is drawn using one straight line segment. We derive

a general lower bound on the number of crossings in any convex drawings

of G, using isoperimetric properties of G. The lower bound implies that

convex drawings of many planar graphs have at least 
(n logn) crossings.

Moreover, for any drawing of G with c crossings in the plane, we construct

a convex drawing with at most O((c+
P

v2V
d2v) logn) crossings, where dv

is the degree of v. This upper bound is asymptotically tight. For planar

graphs, a convex drawing with the required properties can be constructed

in O(n logn) time.
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1 Introduction

Throughout this paper G = (V (G); E(G)) denotes a graph on n vertices and m

edges. Let dv denote the degree of v 2 V . A drawing of G is a placement of

the vertices into distinct points of the plane and a representation of edges uv by

simple continuous curves connecting the corresponding points and not passing

through any point corresponding to a vertex other than u and v. A crossing is

a common interior point of two edges of G. We also assume that any two curves

representing the edges of G have at most one interior point in common and that

two curves incident to the same vertex do not cross. If it leads to no confusion,

we make no distinction between the vertices (edges) of G and the points (resp.

curves) representing them. Let cr(G) denote the crossing number of G, i.e. the

minimum number of crossings over all possible drawings of G in the plane with

the above properties. Although the concept of crossing numbers has played a

crucial role in settling many problems in combinatorial and computational ge-

ometry [S, PST, D], and also in VLSI [L], many interesting problems involving

crossing numbers themselves, remain unresolved or even untouched. An impor-

tant application area of crossing numbers is automated graph drawing. The

number of crossings greatly inuences the aesthetical properties and readability

of graphs [DETT, P]. A rectilinear drawing of G is a drawing in which each

edge is drawn using a single straight line segment. A convex drawing of G is a

rectilinear drawing in which the vertices are placed in the corners of a convex

n-gon, see Fig.1.

Let cr(G) and cr�(G) denote the rectilinear crossing number and the convex

crossing numbers of G, respectively. Convex crossing numbers (also called outer-

planar crossing numbers) were �rst introduced by Kainen [K] in connection with

the book thickness problem. Clearly cr(G) � cr(G) � cr�(G). In particular, it

is well known that cr(K8) = 18 < cr(K8) = 19. (Note that cr�(K8) =
�
8
4

�
= 70.)

In terms of the k-page crossing number �k [SSSV1, SSSV2], it is obvious that

cr�(G) = �1(G) for every graph G.

The main result in this paper is a general lower bound on the convex crossing

number. It is easy to see, that cr�(G) � m � 2n + 2. Consequently, cr�(G) �
1
27
� m3

n2
, for m � 3n, using standard methods such as those in [SSSV1]. Let

B(G) denote the minimum size of a (1=3; 2=3) edge separator in G, i.e. B(G) =

minU�V (G) jE(U; �U)j, where n=3 � jU j � 2n=3 is required in the minimization.

It is well known that cr(G) = 
(B2(G) � 2:5
P

v2V d2v), and hence cr�(G) =


(B2(G) � 2:5
P

v2V d2v). Our lower bound presented in Section 2 involves

isoperimetric properties of G, and in certain cases is much stronger than the

lower bound above. Using our lower bound we exhibit classes of graphs for which

cr�(G) = 

�
(cr(G) +

P
v2V d2v) logn

�
. A surprising consequence is that in any

convex drawing of an n-vertex 2-dimensional grid (which is a planar graph),

there are 
(n logn) crossings. Similar results hold for hexagonal and triangular

grids.

We also derive a general upper bound on cr�(G). In particular, given any

drawing of G with c crossings, one can construct a convex drawing with O((c+P
v2V d2v) logn) crossings. Moreover, if the original drawing is represented by a
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Figure 1: The 4� 4 cylindrical grid and its convex and one-page drawings

planar graph, where each crossing is replaced by a vertex of degree 4, then our

construction takes only O((c + n) logn) time. Previously Bienstock and Dean

[BD] had proved that cr(G) = O(� � cr2(G)), where � denotes the maximum

degree of G. We improved their result in [SSSV2] by showing that

cr�(G) = O((cr(G) +
X
v2V

d2v) log
2 n): (1)

Very recently, Even et al. [EGS], proved that for every degree bounded graph

cr�(G) = O((cr(G)+n) logn)). Our new upper bound extends the construction

in [EGS] from degree bounded graphs to arbitrary graphs, and improves our

previous bound (1) in [SSSV2] by a logn factor. The upper bound is tight,

within a constant multiplicative factor, for many interesting graphs including

grids, and hence it can not be improved in general. Our upper bound implies

that ifm � 4n, and � = O((m
n
)2), then, cr�(G) = O(cr(G) logn), and therefore,

cr(G) = O(cr(G) logn). Thus, when G is \semi-regular" and not too sparse,

cr�(G) is a good approximation for both cr(G) and cr(G).

This paper is an extended version of the conference paper [SSSV3]. The
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authors are indebted to �Eva Czabarka for her useful comments.

2 Lower Bound

Let us be given a non-negative function f(x) de�ned on non-negative integers (or

sometimes on all non-negative real numbers). We say that G satis�es the f(x)-

isoperimetric inequality if for any k � n=2; and any k-element subset U � V;

there are at least f(k) edges between U and V nU . De�ne the di�erence function
of f , denoted by �f as

�f(i) = f(i+ 1)� f(i)

for any i = 0; 1; :::; bn
2
c � 1, and set

�2f(i) = (�(�f))(i)

for any i = 0; 1; :::; bn
2
c � 2. Next, we derive a general lower bound for the

number of crossings in convex drawings of G.

Theorem 2.1. Assume that G = (V (G); E(G)) satis�es an f(x)-isoperimetric

inequality so that �f is non-negative and decreasing for 1 � i � bn
2
c� 1, where

n = jV (G)j � 4. Then we have

cr�(G) � �n

8

bn2 c�2X
j=0

f(j)�2f(j)� 1

2

X
v2V

d2v: (2)

Proof. Let D be a convex drawing of G. Without loss of generality we may

assume that the vertices in D form a regular n-gon. Label the vertices by

0; 1; 2; :::; n�1 in counter-clockwise order. For simplicity, we will often identify a

vertex with the corresponding integer and all computations will be taken modulo

n. De�ne the distance l(u; v) between u; v 2 V as minfju� vj; n� ju� vjg; see
Fig.2.

For any uv 2 E, let c(u; v) denote the number of crossings of the edge

uv with other edges in D, and c(D) denote the number of crossings in the

drawing D. Observe that c(u; v) � f(l(u; v) + 1)� du � dv if l(u; v) < bn
2
c; and

c(u; v) � f(l(u; v))� du � dv, if l(u; v) = bn
2
c. We conclude that

c(D) =
1

2

X
uv2E

c(u; v) � 1

2

X
uv2E

[f(l(u; v))� du � dv ]

=
1

2

X
uv2E

f(l(u; v))� 1

2

X
v2V

d2v: (3)

We say that an edge uv 2 E in the drawing D covers a vertex i if the unique

shortest path between u and v (using only the edges along the boundary of the

convex n-gon) contains i. If the shortest path is not unique (this happens if
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Figure 2: A convex drawing of a 16-vertex graph. E.g. the distance of 0 and 9

is 7.

n = 2l(u; v)), then we pick arbitrarily one of the two shortest paths, and declare

its vertices be covered by the uv edge. (Note that when uv covers i, we may

have i = u or i = v.) For any edge e = uv and any vertex i, de�ne loadu;v(i) as

loadu;v(i) =

(
�f

�
minfl(u; i); l(i; v)g

�
if e covers i,

0 otherwise.

It is easy to see that for any uv 2 E,

X
i2V

loadu;v(i) � 2

b l(u;v)2 cX
j=0

�f(j) � 2f

��
l(u; v)

2

�
+ 1

�
: (4)

We conclude using (4) and (3) that

1

4

X
uv2E

X
i2V

loadu;v(i) � 1

2

X
uv2E

f

��
l(u; v)

2

�
+ 1

�

� 1

2

X
uv2E

f(l(u; v))

� c(D) +
1

2

X
v2V

d2v; (5)
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and therefore it is suÆcient to bound from below the sum involving loads.

Let i 2 V . For 0 � j, de�ne Ei;j to be the set of all edge uv 2 E covering

vertex i in D such that minfl(i; u); l(i; v)g � j. Observe that Ei;j�1 � Ei;j .

Note that for any i 2 V and for any uv 2 Ei;j n Ei;j�1, we have that i is at

distance j from one of u and v, and at distance at least j from the other one.

Therefore, for any i 2 V and for any uv 2 Ei;j n Ei;j�1, we have loadu;v(i) =

�f(j), according to the de�nition of the load. Let kj denote
P

i2V jEi;j j. For
any s � bn

2
c � 1, we have

X
i2V

X
uv2Ei;s

loadu;v(i) =
X
i2V

sX
j=0

X
uv2Ei;jnEi;j�1

loadu;v(i)

=
X
i2V

X
uv2Ei;0

loadu;v(i) +

sX
j=1

X
i2V

X
uv2Ei;jnEi;j�1

loadu;v(i)

� k0�f(0) +

sX
j=1

(kj � kj�1)�f(j);

where the last inequality is obtained by observing that the number of terms in

the sum
P

i2V

P
uv2Ei;jnEi;j�1

loadu;v(i), is kj � kj�1. It follows that

X
i2V

X
uv2Ei;s

loadu;v(i) � ks�f(s)�
s�1X
j=0

kj�
2f(j): (6)

Note that up to (6) we did not use the assumption that �f is decreasing, we

used only that �f is non-negative. Since ks�f(s) � 0, we can drop the �rst

term from the lower bound in (6). We also have for all j � n=2,

kj � 1

2
nf(j):

To see this, consider any j consecutive integers i; i+1; :::; i+ j�1. The number

of edges leaving this j-element set is at least f(j), and each of them must cover

either i or i + j � 1. We may have counted some ordered pairs (edge, vertex

covered by the edge) twice, since any vertex i is an endpoint of two intervals of

length (distance) j, and if an edge f goes from the �rst interval to the second,

then the ordered pair (f; i) is counted twice. Observe that if an edge uv covers

a vertex i, then uv 2 Ei;bn
2
c�1, if n � 4. Using s = bn

2
c � 1 we conclude that

X
i2V

X
uv2E

loadu;v(i) =
X
i2V

X
uv2E

i;bn2 c�1

loadu;v(i) � �n

2

bn2 c�2X
j=0

f(j)�2f(j):

Note that in the last inequality we did use the condition that �f(j)��f(j+1) �
0, i.e. that �f is decreasing. In view of (5), this completes the proof.
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Corollary 2.2. Let G be an N � N grid. Then, as n = N2 tends to in�nity,

we have

cr�(G) = 
(n logn):

Proof. According to Bollob�as and Leader [BL], f(x) =
p
2x; for x � n=2; for the

N �N grid. The result follows from Theorem 2.1 by standard calculations.

Theorem 2.3. Let H be one of the in�nite fsquare, hexagonal, triangularg
lattices in the plane and let C be any bounded open convex domain. For any

� > 1 real number, let H� denote the induced subgraph of H on the vertex set

V (H)\�C, where �C is an enlarged copy of C. Then, if 
(:) refers to �!1,

we have

cr�(H�) = 
(jV (H�)j � log jV (H�)j): (7)

Proof. (Sketch.) Since cr� is monotone for the subgraph relation, it is suÆcient

to prove an analogue of (7) for any particular in�nite family of �nite subgraphs

Hn of H, which has the property

9k > 09�08� > �09n : Hn is a subgraph of H� and jV (Hn)j � kjV (H�)j: (8)

If H is the square lattice, then Hn = n�n grid is a choice of satisfying (8), and

this proves Theorem 2.3 for the square lattice.

It is clear that (8) holds for every \reasonably rounded" family of subgraphs

of the hexagonal or triangular lattice. Assume for a while that Theorem 2.3 holds

for the hexagonal lattice, and we show it for the triangular lattice. Just observe

that starting with a unit edge length triangular lattice, colouring the vertices of

the lattice with three colours, and removing vertices of one colour class, we end

up with a unit edge length hexagonal lattice. Therefore cr�(Htri
� ) � cr�(Hhex

� ):

Therefore, it is suÆcient to prove Theorem 2.3 for the hexagonal lattice.

The edges of the hexagonal lattice fall into 3 parallel classes, denoted by

1,2, and 3, as shown on Fig. 2. Simultaneously contracting all edges of a �xed

type (say, type 2), one obtains a square lattice. Therefore, in a \reasonably

rounded" chunk of the hexagonal lattice one �nds a square grid represented,

whose size is linear in the size of the chunk of the hexagonal lattice. In such

a representation, some vertices of the square lattice correspond to a pair of

vertices of the hexagonal lattice. Fix now a convex drawing of a chunk of the

hexagonal lattice with c crossings. Next, we transform it into a convex drawing

of the chunk of the square grid contained in it so that the number of crossings

remains O(c). For this purpose, we contract every edge uv in the �rst drawing,

whose endpoints correspond to the same vertex of the square grid. Put the new

vertex corresponding this edge to the same location where u or v used to be.

Every new vertex has one or two pre-images. Assume that e = ab and f = uv

are crossing edges of square lattice in the convex drawing. Each of the 4 vertices

a; b; u; v has 1 or 2 pre-images before contraction. The pre-images of the edges

e and f (induced subgraphs on the pre-image vertex set) are 1-paths, 2-paths,

or 3-paths. Observe that if the edges e = ab and f = uv cross each other, then

7
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their their pre-images are two crossing paths. A simple calculation shows that

the number of crossing i-paths and j-paths (1 � i; j � 3) in the convex drawing

of a chunk of the hexagonal lattice is at most O(c), since every degree is at most

3 in the hexagonal graph. This proves the claim, since the contraction kept at

least 50% of the number of vertices, and Corollary 2.2 applies to a suÆcently

large subgraph of the result of the contraction.

3 Upper bound

Theorem 3.1. If G is drawn in the plane with c crossings, then a convex draw-

ing of G with O
�
(c+

P
v2V d2v) logn

�
crossings can be constructed. Moreover,

if the original drawing is represented as a plane embedding of a planar graph,

where new vertices of degree 4 represent crossings, then the order in which the

vertices of G appear in the convex drawing can be determined in O ((c+ n) logn)

time.

Proof. To some extent we follow the arguments of Even, Guha, and Schieber

[EGS], and therefore we do not go deep into the details. Consider any drawing

of G in the plane with c crossings and let the set of crossings be denoted by

C. Construct a planar graph denoted by bG, on the vertex set bV = V [ C by

inserting vertices of degree 4 at the crossings.

Recall that in a one-page drawing of bG all vertices are placed on a straight

line l and any edge is drawn using a semicircle above the line [SSSV2], see Fig. 1.

The crucial part of the proof will be to construct a one-page drawing of bG with

O((c +
P

v2bV d2v) logn) crossings. Accept, for the moment, that we have such

8



a one-page drawing of bG. We then modify this drawing to obtain a one-page

drawing of G: bG provides the order of the vertices of V , and the edges of G are

represented by semicircles in the halfplane. It is easy to see that the number

of crossings in this one-page drawing of G does not exceed by more than c the

number of crossings in the one-page drawing of bG. Finally, a convex drawing

of G with the same number of crossings is easy to obtain from the one-page

drawing.

To obtain the desired drawing of bG we construct a partition tree T [SSSV2]

of bG. The root of T corresponds to bG, and any non-leaf node in T corresponds

to a subgraph of bG with at least 2 vertices. To describe the tree, it is suÆcient

to indicate how to construct the left and right children of bG, denoted by bG1 andbG2, respectively; the procedure recursively extends to the entire tree.

Assign a weight of w(v) =
d2vP

y2 bV
d2y
, to any vertex v of bV = V ( bG), where dv

is the degree of v in bG. Recall a well known theorem of Gazit and Miller [GM]

that any bG has a (1=3; 2=3) edge separator of size at most

1:6

sX
v2bV

d2v ;

if for all v, w(v) � 2=3.

� Case 1. Assume that w(v) � 2=3 for any vertex v 2 bV . Apply the theorem
cited above to �nd an (1=3; 2=3) edge separator of size at most

1:6

sX
v2bV

d2v :

Now de�ne bG1 and bG2 to be the two components of bG that are the obtained by

the removal of the (1/3,2/3) separator.

� Case 2. Assume that there is a vertex v in bG with w(v) � 2=3. De�ne

V ( bG1) = fvg and V ( bG2) = V ( bG)� fvg, and let bG1 and bG2 be graphs induced

by bG on these vertex sets.

A one-page drawing of bG is obtained by placing a one-page drawing of bG1

to the left of a one-page drawing of bG2, and then drawing the removed edges

between bG1 and bG2 as semicircles between the corresponding vertices. Let b( bG)
denote the number of edges that have one endpoint in bG1 and the other endpoint

in bG2. Similarly, de�ne b( bGi), i = 1; 2. It follows from cases 1 and 2 and from

the recursive de�nition that

b( bG) � 1:6

sX
v2bV

d2v;

and

b( bGi) � 1:6

s X
v2V ( bGi)

d2i;v ;

9



where di;v denotes the degree of v 2 bVi in bGi, i = 1; 2. It follows that

b( bGi) � 1:6

s
2
P

v2bV d2v

3
;

i = 1; 2. Let S( bG) denote the maximum number of edges that go above any

vertex in the obtained one-page drawing of bG. Similarly, de�ne S( bGi), i = 1; 2.

Also note that,

S( bG) � b( bG) + maxfS( bG1); S( bG2)g;
and therefore

S( bG) = O
�sX

v2bV
d2v

�
: (9)

Now let c( bG) and c( bGi) denote the number of crossings in the one-page drawing

for bG, and for bGi, i = 1; 2, respectively. Observe that

c( bG) � c( bG1) + c( bG2) + 2b( bG)S( bG);
and thus

c( bG) � c( bG1) + c( bG2) +O

0
@X

v2bV
d2v

1
A : (10)

This implies the claimed upper bound, since the depth of the partition tree is

logarithmic in
P

v d
2
v , and hence in n, and the sum of the square of degrees is

superadditive over the subgraphs. To �nish the proof, assume that the planar

graph bG is given. Then, the claim regarding the time complexity follows from

the fact that computing the edge separators in [GM] can be done in the linear

time for any planar graph, and hence the partition tree T can be constructed

in O((c+ n) logn) time.

4 An Elementary Extremal Problem

Consider an N �N chessboard, and �ll in the �elds with the numbers 1; 2; 3; :::;

N2, using every number once. If two �elds adjacent along an edge contain the

numbers a and b, we put a weight of
p
ja� bj on this edge. The goal is to �ll

in the numbers so as to minimize the total weight of all edges. The solution

to this problem is not known. Let C(N) be the value of the optimal solution.

We do not know the exact value of C(N). However, the results in the paper

set the lower bound C(N) = �(N2 logN), as follows. De�ne Co(N) like C(N),

but use the weight min(
p
ja� bj;

p
n2 � ja� bj) instead of

p
ja� bj. Equation

(3) in Theorem 2.1 sets a lower bound for Co(N), Co(N) = 
(N2 logN) in

the following way. View the chessboard as a planar grid, and let G denote its

dual, i.e., another weighted grid whose vertices correspond to the �elds and are

associated with the numbers sitting in them. Assign to each edge the number

10



associated with the corresponding edge of the original grid. Consider now a

convex drawing of G, where the the cyclic order of the vertices is determined

by the increasing order of their weights. Note that the sum of the weights is

identical to the lower bound for cr�(G). It is not diÆcult to see that C(N) =


(Co(N)).

On the other hand, Theorem 3.1 applies to G and provides the upper bound

C(N) = O(N2 logN), and hence C(N) = �(N2 logN). Finally, note that

it takes only O(N2 logN) time to �ll in the �elds of the N � N chessboard

achieving the approximation above for C(N).
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