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Abstract

In this paper we study inverting random functions under the maxi-
mum likelihood estimation (MLE) criterion. In particular, we consider
how many independent evaluations of the random function at a particu-
lar element of the domain are needed for reliable reconstruction of that
element. We provide explicit upper and lower bounds for MLE, both
in the non-parametric and parametric setting, and give applications to
coin-tossing and phylogenetic tree reconstruction.
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1 Review of random functions

This paper is a sequel of our earlier paper [11]. We assume that the reader is
familiar with that paper, however, we repeat the most important de�nitions.

For two �nite sets, A and U , let us be given a U -valued random variable
�a for every a 2 A. We call the vector of random variables (�a : a 2 A)
a random function � : A ! U . Ordinary functions are speci�c instances of
random functions. It is easy to see [11] that an equivalent de�nition of random
functions is obtained by picking one of the jU jjAj ordinary functions from A to
U according to some distribution.

Given another random function, �, from U to V , we can speak about the
composition of � and �, � Æ� : A! V , which is the vector variable (
�a : a 2
A). In this paper we are concerned with inverting random functions. In other
words, we look for random functions � : U ! A in order to obtain the best
approximations of the identity function � : A! A by � Æ�. We always assume
that � and � are independent. This assumption holds for free if either � or � is
a deterministic function.

Our motivation for the study of random functions came from phylogeny
reconstruction. Stochastic models de�ne how biomolecular sequences are gener-
ated at the leaves of a binary tree. If all possible binary trees on n leaves come
equipped with a model for generating biomolecular sequences of length k, then
we have a random function from the set of binary trees with n leaves to the or-
dered n-tuples of biomolecular sequences of length k. Phylogeny reconstruction
is a random function from the set of ordered n-tuples of biomolecular sequences
of length k to the set of binary trees with n leaves. It is a natural assumption
that random mutations in the past are independent from any random choices in
the phylogeny reconstruction algorithm. Criteria for phylogeny reconstruction
may di�er according to what one wishes to optimize.

Consider the probability of returning a from a by the composition of two ran-
dom functions, that is, ra = IP[
�a = a]. The assumption on the independence
of � and � immediately implies

ra =
X
u2U

IP[�a = u] � IP[
u = a]: (1)

A natural criterion is to �nd � for a given � in order to maximize
P

a ra.
More generally, we may have a weight function w : A ! IR+ and we may wish
to maximize

P
a raw(a). This can happen if we give preference to returning

certain a's, or, if we have a prior probability distribution on A and we want to
maximize the expected return probability for a random element of A selected
according to the prior distribution. A random function �� : U ! A can be
de�ned in the following way: for any �xed u 2 U ,


�u = a� for sure, if for all a 2 A; IP[�a� = u]w(a�) � IP[�a = u]w(a): (2)
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In case there is more than one element a� that satis�es (2), we may select uni-
formly at random from the set of such elements. This function �� is called the
maximum a posteriori estimator (MAP) in the literature [8]. The special case
when the weight function w is constant, is known as the maximum likelihood
estimation (MLE) [2, 8]. We showed in [11] that the MAP estimator �� max-
imizes

P
a raw(a) for any given �. However, it is at least as natural to look

at a more conservative criterion: maximize the smallest value of ra for a 2 A.
For this criterion MAP or MLE is, in general, not optimal. These results have
been known in the context of statistical decision theory [2] but have not been
discussed in the context of phylogeny before [11].

Our paper [11] introduced a new abstract model for phylogeny reconstruc-
tion: inverting parametric random functions. Most of the work done on the
mathematics of phylogeny reconstruction can be discussed in this context. This
model is more structured than random functions, and hence is better suited to
describe details of models of phylogeny and the evolution of biomolecular se-
quences. The approach is likely to be applicable in other areas where \nuisance"
parameters are involved.

Assume that for a �nite set A, for every a 2 A, a (arbitrary, �nite or in�nite)
set �(a) 6= ; is assigned, and moreover, �(a) \ �(b) = ; for a 6= b. Set
B = f(a; �) : a 2 A; � 2 �(a)g and let �1 denote the natural projection from
B to A. A parametric random function is the collection � of random variables
such that

(i) for a 2 A and � 2 �(a), there is a (unique) U -valued random variable �(a;�)
in �.

We are interested in random functions � : U ! A independent from � so that

�(a;�) best approximates �1 under certain criteria. Call R(a;�) the probability
IP[
�(a;�) = a]. Maximum Likelihood Estimation, as it is used in the practice of
phylogeny reconstruction, would take the �0, for which for every �xed u, 
0u = a0

for sure, if

8(a; �) 2 B 9�0 2 �(a0) IP[�(a0;�0) = u] � IP[�(a;�) = u] (3)

In case there is more than one element a0 that satis�es (3), we may select
uniformly at random from the set of such elements. We denote by R0(a;�) the
probability that from the pair (a; �) the Maximum Likelihood Estimation �0

returns a, i.e.
R0(a;�) = IP[
0�(a;�) = a]: (4)

In [11] we made further assumptions on parametric random functions that
we do not make in this paper:

(ii) there is a measure space (�(a); �a(:)) de�ned on every �(a), such that
�a(�(a)) <1;
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(iii) for all u 2 U , and for all a 2 A, IP[�(a;�) = u] 2 L1(�(a); �a(:)):

Under these additional conditions we showed in [11] that in the model of
parametric random functions, the MLE criterion has to be modi�ed to ensure
the property that �0 maximizes

X
a2A

Z
R(a;�)d�a(�): (5)

This criterion is natural, since if
P

a2A
R
d�a(�) = 1, the formula (5) can be

interpreted as the expected probability of return of elements of A, given a prior
distribution on A.

The purpose of this paper is to place explicit upper and lower bounds on
the probability that MLE correctly reconstructs elements of A, in both the
parametric and non-parametric settings. Our primary interest is in the situation
where k independent experiments are carried out, and we wish to determine how
large k needs to be in order to correctly recover the underlying element of A with
high probability. To emphasise the role of k we will let [r(k)]�a (resp. [R

(k)]0(a;�))
denote the probability that MLE correctly reconstructs a, in the non-parametric
(resp. parametric) setting. We illustrate our bounds in the non-parametric
setting by applications to coin-tossing and phylogeny reconstruction.

For the parametric setting, we �rst show, by way of an example, that the
non-parametric upper bound on k does not extend in the way one might hope
or expect. Nevertheless, we provide (in Theorem 4) an explicit upper bound
on the number k of experiments required for MLE to reconstruct elements of
A accurately. This result can be regarded as an extension of a discrete ver-
sion of Wald's theorem ([14]). We describe some implications of this result for
phylogeny reconstruction in the remarks following Theorem 4.

2 Distances between distributions

For a; b 2 A, � : A! U , let

d(a; b) =
X
u2U

jIP[�a = u]� IP[�b = u]j: (6)

We will refer to d(a; b) as the variational distance of the random variables �a
and �b. We also use the Hellinger distance of the random variables �a and �b,
de�ned by

dH(a; b) =

vuutX
u2U

�p
IP[�a = u]�

p
IP[�b = u]j

�2

: (7)
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These measures sometimes appear with slightly di�erent de�nitions, termi-
nology and normalization constants (for example, 1

2d(a; b) is sometimes referred
to as the \variation distance"). It is well known [5] that 0 � d(a; b) � 2 and

d2H(a; b) � d(a; b) � 2dH(a; b): (8)

We are going to use a well known, and elegant multiplicative property of the
Hellinger distance. For any � : A ! U random function de�ne the �(k) :
A ! Uk random function as a sequence of k independent trials of �. Let

d
(k)
H (a; b) denote the Hellinger distance of the random variables �

(k)
a and �

(k)
b .

Then independence immediately implies the identity

1� 1

2

�
d
(k)
H (a; b)

�2

=

�
1� 1

2
d2H(a; b)

�k
; (9)

by virtue of the formula

X
u2U

�p
IP[�a = u]�

p
IP[�b = u]j

�2

= 2� 2
X
u2U

p
IP[�a = u]

p
IP[�b = u]: (10)

Combining the inequality 1 � (1 � x)k � kx which holds for all 0 � x � 1 and
k positive integer, and (9), we obtain�

d
(k)
H (a; b)

�2

= 2

�
1�

�
1� 1

2
d2H(a; b)

�k�
� kd2H(a; b): (11)

Using the notation d(k)(a; b) for the variational distance of the k independent

trials, i.e. of the random variables �
(k)
a and �

(k)
b , inequalities (8) and (11) imply

d(k)(a; b) � 2
p
kdH(a; b): (12)

The nonsymmetric Kullback-Leibler distance (or conditional entropy) of the
random variables �a and �b is de�ned as

dKL(a; b) =
X
u2U

IP[�a = u] log
IP[�a = u]

IP[�b = u]
:

We will use the inequality [4]

dKL(a; b) � 1

2
d2(a; b): (13)

3 Maximum likelihood estimation for inverting

random functions

In this section we describe some lower and upper bounds on the probability that
MLE correctly reconstructs elements of the set A. A classical upper bound on
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the average value of ra over A { or more generally the value of
P

a2A raw(a)
for some probability distribution w on A { is given by \Fano's Inequality" (see
for example [4]). Here we recall from [11] a di�erent type of lower bound, that
applies also to ra for any particular value of a, and which is closely related to
the variational distance.

Theorem 1 Assume that we have �nite sets A and U and random functions
� : A! U and � : U ! A. Suppose that there is an element b 2 A and a subset
N � A such that for all a 2 N

d(a; b) < Æ:

Then we have

min
a2N

ra � 1

jN j + Æ(1� 1

jN j ):

Now we can state the following lower bound for ra in the setting of Theorem 1:

Theorem 2 Assume that we have �nite sets A and U and a random function
� : A ! U . Assume that �� : U ! A is the maximum likelihood estimation,
and r�a is the return probability of a 2 A using ��. Then we have

r�a � 1�
X
b6=a

�
1� 1

2
d(a; b)

�
: (14)

If the maximum likelihood estimation �� : Uk ! A is applied to invert the
random function �(k) : A! Uk, which is a sequence of k independent trials of
�, then

[r(k)]�a � 1�
X
b6=a

�
1� 1

2
d2H(a; b)

�k
: (15)

Proof. For y 2 A let

Uy =

�
u 2 U j 8x 2 A; x 6= y; IP[�y = u] > IP[�x = u]

�

and similarly Vy with � instead of > in the de�nition. It is clear from indepen-
dence (1) and the de�nition (2) that

r�a �
X
u2Ua

IP[�a = u]: (16)

For x; y 2 A set pxy =
P

u2Vy IP[�x = u]. Now we claim

r�a � 1�
X
y 6=a

pay: (17)
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Note that X
y 6=a

pay =
X
y 6=a

X
u2Vy

IP[�a = u] � IP[�a =2 Ua];

since the complement of Ua is a subset of [y 6=aVa, and
IP[�a =2 Ua] = 1� IP[�a 2 Ua] � 1� r�a

by (16). This establishes (17). Finally, we have

d(a; y) =
X
u2U

jIP[�a = u]� IP[�y = u]j =

X
u2Vy

�
IP[�y = u]� IP[�a = u]

�
+
X
u=2Vy

jIP[�a = u]� IP[�y = u]j �

pyy�pay+
X
u=2Vy

�
IP[�a = u]+ IP[�y = u]

�
= pyy�pay+(1�pay)+(1�pyy) = 2�2pay :

Hence pay � 1� 1
2d(a; y), and plugging this into (17) yields (14). To prove (15),

apply (14) to �(k) and invoke (9).

Remarks. First, note that (15) immediately implies that if
da = minb6=a dH(a; b), then [r(k)]�a > 1� jAj exp(�kd2a=2). Consequently, if

k >
2

d2a
log

jAj
�
;

then [r(k)]�a > 1� �. Second, note that an analogue of (15) also holds, if instead
of k independent trials of �, we take independent A ! U random functions
�1;�2; :::;�k. Now the lower bound on [r(k)]�a is

1�
X
b6=a

kY
i=1

�
1� 1

2
d2H((�i)a; (�i)b)

�
:

4 Applications

4.1 Solving biased coin tossing with MLE

We want to show an example where our upper and lower bounds for recon-
structing random functions are nearly tight. Assume that U = fT;Hg, i.e.
we are tossing coins. Let a set A consist of n + 1 biased coins, denoted by
0; 1; 2; :::; n + 1. The random function � is as follows: and coin i takes H with
probability i=n and takes T with probability 1 � i=n. We show the following:
there is a constant c1 such that for k = c1n

2, for k independent trials of �,
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�(k), [r(k)]i cannot be uniformly close to 1, no matter which method is used for
inverting �(k). However, there is a constant c2 such that for k = c2n

2, using
MLE, we �nd [r(k)]�i uniformly close to 1.

For simplicity we assume that n is odd. We are going to use Theorem 1 in
the following setting: b = n�1

2 , N = fn�32 ; n+12 g. Then,

min
a2N

[r(k)]a � 1

2
(1 + Æ);

where Æ is the smaller variational distance for �(k) among b and the elements of
N . Observe that for �, by formula (10), we have

d2H(i; j) = 2

�
1�

p
ij

n
�
p
(n� i)(n� j)

n

�
: (18)

It is easy to see that for i = b, j 2 N , (18) is maximized by j0 =
n+1
2

at the

value 2
�
1 �

q
1� 1

n2

�� 1=n2. By (12), d(k)(b; x) � 2
p
kdH(b; x), for every x,

and therefore Æ � 2
p
kdH(b; j0) � 2

p
k=n: Any choice of c1 < 1=4 suÆces to

keep either rn�3
2

or rn+1
2

separated from 1.

In the other direction we use Theorem 2. By (15) and (18) we have

[r(k)]�i � 1�
nX

j=0
j 6=i

�
1� 1

2
d2H(i; j)

�k
= 1�

nX
j=0
j 6=i

�p
ij

n
+

p
(n� i)(n� j)

n

�k=2
: (19)

By the classical inequality
p
a1a2 +

p
b1b2 �

p
a1 + b1 �

p
a2 + b2;

the generic subtracted term in the summation (19) is estimated from above by�
1� (j � i)2

n2

�k=2
:

Hence,

[r(k)]�i � 1� 2
nX

m=1

�
1� m2

n2

�k=2
: (20)

Now observe that
nX

m=1

�
1� m2

n2

�k=2
�
�
1� 1

n2

�k=2
+n

Z 1

1=n

(1� x2)k=2dx (21)

and

n

Z 1

1=n

(1� x2)k=2dx � n

Z 1

1=n

e�k�x
2=2dx � np

k

Z p
k

p
k=n

e�t
2=2dt � np

k
� 1

2
p
2�

:

Therefore, for a suÆciently large c2, selecting k = c2n
2, both terms in the RHS

of (21) will be as small as wanted, and hence in (20) [r(k)]�i will be as close to 1
as wanted.
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4.2 Phylogeny reconstruction

As a second application, we consider a problem arising in phylogenetic analysis.
In this setting we have a model for generating sequences at the leaves of a tree,
and the question is how long such sequences need to be in order to correctly
reconstruct the tree from just the generated sequences.

The simplest stochastic model, for two-state sequences, is the symmetric
model, due to Neyman [9] and which we call the Neyman-2 model (related mod-
els also arise in statistical physics and in the theory of noisy communication|see
for example [7]). Let f0; 1g denote the two states. Let us be given a binary tree
T (a tree in which each vertex has degree 1 or 3) with n labelled leaves. We
describe how a single site in the sequence develops on T , and then we assume
that the sites are independently and identically distributed (i.i.d.).

For each edge e of T we have an associated transition probability, which
lies strictly between 0 and 0:5. Let p : E(T ) ! (0; 0:5) denote the associated
map. Select one of the leaves, and assign it state 0 or state 1 with probability
0:5. Direct all edges away from this leaf and recursively assign random states
to the vertices of T as follows: if e = fu; vg is directed from u to v, and u
(but not v) has a state assignment, then v is assigned the same state as u with
probability 1� pe or the other state with probability pe (in this latter case, we
say there is a transition on e). It is assumed that all assignments are made
independently, and so the pair (T; p) determines the joint probability of any
assignment of states to the vertices of T , and thereby the marginal probability
of any assignment of states to the leaves of T . If we independently generate k
such assignments of states to the leaves of T , we obtain n sequences of length k.
For this model, upper bounds on the sequence length k required to reconstruct
the underlying tree were given in [6, 11]. These papers showed that, for accurate
tree reconstruction, k needs to grow only quadratically in 1=f where f is the
smallest transition probability in the tree, when other parameters are �xed. We
now show that this rate of growth is not only suÆcient, but is also necessary.

Consider binary trees on having four labelled leaves and two unlabelled inte-
rior vertices. There are three such trees (up to equivalence) and we will denote
them as a; b; c. Each tree has four leaf edges (an edge incident with a leaf) and
one interior edge.

Theorem 3 For the three binary trees a; b; c on four leaves, suppose we have
a Neyman-2 model, in which all the leaf edges have �xed transition probabili-
ties, while the interior edge has transition probability f . Under any method for
inverting this random function � from k independent trials (i.e. sequences of
length k) with success probability near 1 for all three trees, k = 


�
1
f2

�
.

Proof.
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We are going to prove that for f suÆciently close to 0, for some constant
C > 0

dH(a; b) � Cf: (22)

Now (12) and (22) imply d(k)(a; b) � 2Cf
p
k, and one similarly obtains

d(k)(c; b) � 2Cf
p
k. So if we apply Theorem 1 with N = fa; cg:

minfra; rcg � 1

3
+
4

3
Cf

p
k; (23)

and the right-hand side of (23) is well separated from 1 as k is a small constant
over f2.

To complete the proof, we have to verify (22). Assume that a is the tree in
which the interior edge separates leaves 1; 2 from leaves 3; 4; and b is the tree in
which the interior edge separates leaves 1; 3 from leaves 2; 4. By (7)

dH(a; b)
2 =

X
u2U

�p
IP[�a = u]�

p
IP[�b = u]j

�2

(24)

where the summation goes for 16 terms which correspond to the 16 elements
of U : functions with domain f1; 2; 3; 4g and co-domain f0; 1g. We are going to
condition on the event � denoting that there is transition on the interior edge
of the tree, and also for the complement of this event. For x = a; b de�ne

A(x; u) = IP[�x = u j :�]
B(x; u) = IP[�x = u j �]� IP[�x = u j :�];

where A(x; u) and B(x; u) are just positive constants. Observe that

IP[�x = u] = IP[�x = uj :�] � (1� f) + IP[�x = uj �] � f
= IP[�x = uj :�] + f � �IP[�x = u j �]� IP[�x = u j :�]�
= A(x; u) + fB(x; u):

It easily follows from the geometry of the trees a and b that A(a; u) = A(b; u).
Furthermore, it is easily seen that A(a; u) 6= 0 for all values of u, which en-
sures (below) that we may divide expressions by A(a; u). Hence, by the Taylor
expansion of the squareroot function, we have:

p
IP[�a = u]�

p
IP[�b = u] =

p
A(a; u)

�s
1 +

fB(a; u)

A(a; u)
�
s
1 +

fB(b; u)

A(a; u)

�

= f
B(a; u)�B(b; u)

2
p
A(a; u)

+O(f2); (25)

and summing up 16 terms like (25) we obtain

d2H(a; b) = f2
X
u2U

(B(a; u)�B(b; u))2

4A(a; u)
+O(f3);
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and this proves (22) for all

C >

sX
u2U

(B(a; u)�B(b; u))2

4A(a; u)
:

5 Maximum likelihood estimation for inverting

parametric random functions

We start with an example showing that for parametric MLE there is no coun-
terpart of (15), that is, there is no function f = f(Æ; k) such that for all Æ > 0,
limk!1 f(Æ; k) = 0 and

[R(k)]0(a;�) � 1�
X
b6=a

f
�
Æ((a; �); b); k

�
; (26)

where
Æ((a; �); b) = inf

�02�(b)
dH
�
(a; �); (b; �0)

�
:

Take A = fa1; a2g, U = fu1; u2; :::; u2k2g, �(a1) = �(a2) = Uk. (This is the
trick in the construction: we select codomains and parameter spaces whose size
depends on the sequence length k). We denote a generic element of Uk by u, and
supp(u) denotes the set of elements of U which occur as coordinates in u. Let
B = (fa1g � �(a1)) [ (fa2g � �(a2)). De�ne the parametric random function
� : B ! U as follows. Set IP[�(a1;u) = v] = 1=jU j for each v 2 U . For u 2 Uk

and v 2 U , set IP[�(a2;u) = v] = i=k, if v occurs at each i = i(v) coordinates in

u. Now for any w;u 2 Uk we have

d

�
(a1;w); (a2;u)

�
� 2� 1

k
(27)

by the calculationX
v2supp(u)

�
i(v)

k
� 1

jU j
�
+

X
v=2supp(u)

1

jU j = 2� 2
X

v2supp(u)

1

jU j � 2� 2k

jU j = 2� 1

k
:

Consider now k independent trials of �, �(k). We study inverting �(k) with
parametric MLE. Note that for any u 2 Uk,

IP[�
(k)
(a2;u)

= u] =
kY
i=1

IP[�(a2;u) = ui] �
�1
k

�k
;

and for any w 2 Uk,

IP[�
(k)
(a1;w)

= u] =
kY
i=1

IP[�(a1;w) = ui] =
� 1

2k2
�k
<
�1
k

�k
:
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Therefore, one always has [R(k)]0(a1;w) = 0 (see (4)), while by (27) and (8) the
dH distances between the the random variables corresponding to a and b are
well separated from zero. This establishes our claim at the start of this section,
regarding the non-existence of an analogue of (15) from Theorem 2.

However, with mild extra conditions we can state a positive result. This
positive result provides explicit bounds on the convergence of the MLE in the
parametric setting.

Theorem 4 Assume B = f(a; �) : a 2 A; � 2 �(a)g, and � : B ! U is a
parametric random function, where A and U are �nite sets. Assume that for a
particular (a; �) 2 B, there exists a d0 > 0 such that for all b 2 A, b 6= a, and
�0 2 �(b)

d

�
(a; �); (b; �0)

�
� d0; (28)

where d, as usual, denotes the variational distance. If the maximum likelihood
estimation is applied to invert the parametric random function �(k) : A ! Uk,
which is a sequence of k independent trials of �, then

lim
k!1

[R(k)]0(a;�) = 1: (29)

For a more precise result, set U+ = fu 2 U : IP[�(a;�) = u] > 0g, and
m = minu2U+ IP[�(a;�) = u]. If

k > f(m; d0) log

�
2jU+j
�

�
(30)

then MLE estimation returns a with probability at least 1� �, where

f(m; d0) = max

(
16

m
;
17 log2m(1 + 2

m )2

d40

)
:

Proof. For u 2 U , de�ne p(u) = IP[�(a;�) = u], and then m =
minu2U+fp(u)g > 0. De�ne p̂(u) as the corresponding relative frequency, i.e.

p̂(u) =
1

k
#fj : (�j)(a;�) = ug; (31)

where �j is the j
th trial of the random function. Let Æ = 4p

17
, and let

� = minf1
2
;

Æd20
2j logmj(1 + 2

m )
g:

Then,

�j logmj+ �j logmj
m(1� �)

� Æ

2
d20: (32)
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By the large deviation inequality [1] Appendix A formula (14), we have

IP
�jp(u)� p̂(u)j > �p(u)

�
< 2e�c�kp(u) (33)

where c� = minf� log [e�(1+�)�(1+�)]; �
2

2 g. Note that for 0 < � < 1=2 we have

� log[e�(1 + �)�(1+�)] � �2(1��)
2 by Taylor expansion, and hence c� � �2=4.

Therefore, formula (33) holds if we change c� to �2=4 in the exponent. Now
suppose k satis�es inequality (30). Then,

k >
4

m�2
log

�
2jU+j
�

�

by the de�nition of f and �. Consequently, 2jU+je��2km=4 < � and so, with
probability at least 1� � we have,

8u 2 U jp(u)� p̂(u)j � �p(u): (34)

(We also used the Bonferroni inequality, and the fact that with probability 1,
p(u) = p̂(u) = 0 for all u 2 U n U+). For x 2 A;! 2 �(x), consider

L(x; !) =
X
u2U

p̂(u) log IP[�x;! = u]: (35)

(Here, as always in this kind of calculations, we use the convention 0�(�1) = 0,
which is supported by limx!0+ x log x = 0.) L(x; !) is 1

k times the natural
logarithm of the probability that the observed sequence of U -elements came
from (x; !). Therefore L(x; !) � 0 is proportional to the log-likelihood of (x; !).

Consider now a �xed b 2 A, b 6= a and a �xed �0 2 �(b). For u 2 U , we use
the notation q(u) = IP[�(b;�0) = u].

We �nish the proof conditional to the following event:

(34) holds and u =2 U+ implies p̂(u) = 0: (36)

Note that the second part of the condition holds with probability 1, and so event
(36) occurs with probability at least 1� �.

We distinguish two cases. In both cases we show L(a; �) � L(b; �0) > 0.
Since L(a; �)� L(b; �0) is proportional to the log-likelihood ratio of getting the
observed sequence from (a; �) resp. (b; �0), this means the correct reconstruction
of a from the observed data by MLE by (4). Since this holds (with probability
1) for all �0, conditional on event (36), and event (36) occurs with probability
at least 1 � �, the probability that MLE correctly reconstructs a will be least
1� �, as required.

Case 1: there exists a v 2 U+ with q(v) < exp( logm
m(1��) ). In this case

L(b; �0) � p̂(v) log q(v) < logm, so L(b; �0) < logm. On the other hand,
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L(a; �) =
P

u2U p̂(u) log p(u) �Pu2U p̂(u) logm = logm. Therefore, L(a; �) >
L(b; �0).

Case 2: for all u 2 U+, q(u) � exp( logm
m(1��) ). We have for all u 2 U+,

j log q(u)j � j logmj
m(1��) . Consider

L(a; �)� L(b; �0) =
X
u2U

p̂(u) log
p(u)

q(u)
=
X
u2U+

p̂(u) log
p(u)

q(u)
=

X
u2U

p(u) log
p(u)

q(u)
+
X
u2U+

�
p̂(u)� p(u)

�
log

p(u)

q(u)
: (37)

Notice that the �rst sum in (37) is exactly the Kullback-Leibler distance
dKL((a; �); (b; �

0)). By formulae (13, 28) this �rst sum is at least 1
2d

2
0. Since we

conditionize on (34), jp̂(u)� p(u)j � �p(u). Hence we can estimate the absolute
value of the second sum in (37) by

X
u2U

�p(u)
�j log p(u)j+ j log q(u)j�� X

u2U
�p(u)(j logmj+ j logmj

m(1� �)

�
=

�j logmj+ �j logmj
m(1� �)

� Æ

2
d20 (38)

by (32) and so, L(a; �)� L(b; �0) > 0.

Remarks.

1. Notice that, because jU+jm � 1, inequality (30) will hold whenever
k � f(m; d0)j log( 2

m� )j. Notice that this bound on k (that suÆces for
parametric MLE to reconstruct a with probability at least 1� �) depends
only on �, d0 and m, and it is independent of the cardinality of A and
U (cf. the bound we described for non-parametric MLE in the Remark
following Theorem 2).

2. Note also that the example described at the beginning of Section 5 shows
that one cannot strengthen Theorem 4 by simply dropping the role of
m. That is, Theorem 4 fails if we replace replace (30) with the weaker
condition that that

k � f1(d0) log

�
2jU j+
�

�

for some suitable function f1 (that does not depend on m), since in the
example described, any such inequality will be satis�ed for suÆciently
large k (jU j grows only quadratically with k) yet MLE fails to recover
a1. A closer examination of this example shows that m converges to zero
suÆciently fast with k for the bound in (30) to be violated.
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3. Suppose that, for each b 2 A we have (i) the set �(b) is a compact topo-
logical space, and (ii) the mapping from �(b) to the interval [0; 1] de�ned
by (b; �) 7! IP(�(b;�)=a = u) is continuous for each element u 2 U . Then
the separation property (28) required in Theorem 4 becomes equivalent to
the (in general weaker) condition that for all b 2 A; b 6= a; and �0 2 �(b)

d((a; �); (b; �0)) > 0: (39)

For example, for most models in the phylogenetic setting, assumptions
(i) and (ii) will apply, and so MLE will be statistically consistent (that
is, satisfy (29)) provided the model satis�es (39). In particular, the de-
tailed analysis, and additional assumption required by Chang [3] in order
to establish (for a general Markov model on trees) a strengthening of (39)
to the case b = a; � 6= �0 is unncessary if one wishes simply to establish
the statistical consistency of MLE in the estimation of a binary tree (and
not the associated transition matrices of the model). There are also other
models in use that satisfy (39), and thereby justify the statistical consis-
tency of MLE. For example, consider a model in which sites evolve i.i.d.
on a binary tree according to a stationary, reversible Markov process (with
an unknown rate matrix), and with a rate factor (constant across the tree)
drawn from a distribution D. Such models satisfy (39) if D is known and
therefore the same for each possible tree ([13], Section 3.3), however (39)
may fail if D is unknown [12]. We note that Theorem 4 also provides the
�rst explicit upper bounds on the sequence length required for MLE to
accurately reconstruct a binary tree in the phylogenetic setting.

5.1 Correction

In our earlier paper ([11]) we made some comments concerning the analysis
of MLE under the Neyman 2-tree model, for a 4-species tree with transition
probability p(e) < � on two adjacent pendant edges, and p(e) > 0:5 � � on the
remaining three edges. We stated that the expected reconstruction probability
for MLE is (approximately) 1=3 for � and Æ suÆciently small (and k �xed). The
words \(approximately) 1=3" should be replaced by \at most 2=3" (a proof of
this assertion is given in [10]). This does not, however, a�ect the conclusions
described in our earlier paper.
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