
On Subtrees of Trees
�

L. A. Sz�ekely and Hua Wang

Department of Mathematics,

University of South Carolina, Columbia, SC 29208

fszekely,hwang0g@math.sc.edu

February 11, 2004

�This research was supported in part by the NSF contracts Nr. 007 2187 and 0302307.

1

Abstract

We study that over a certain type of trees (e.g. all trees or all binary trees) with

a given number of vertices, which trees minimize or maximize the total number of

subtrees (or subtrees with at least one leaf). Trees minimizing the total number of

subtrees (or subtrees with at least one leaf) usually maximize the Wiener index, and

vice versa. In [10], we described the structure of binary trees maximizing the total

number of subtrees, here we provide a formula for this maximum value. We extend

here the results from [10] to binary trees maximizing the total number of subtrees

with at least one leaf|this was �rst investigated by Knudsen [8] to provide upper

bound for the time complexity of his multiple parsimony alignment with aÆne gap

cost using a phylogenetic tree.

Also, we show that the techniques of [10] can be adapted to the minimization of

Wiener index among binary trees, �rst solved in [5] and [6].

Using the number of subtrees containing a particular vertex, we de�ne the subtree

core of the tree, a new concept analogous to, but di�erent from the concepts of

center and centroid.

Keywords: center, centroid, subtree core, number of subtrees, Wiener index, multiple

parsimony alignment with aÆne gap cost, caterpillar, binary tree, tree

2

1 Terminology

All graphs in this paper will be �nite, simple and undirected. A tree T = (V;E) is a

connected, acyclic graph. We refer to vertices of degree 1 of T as leaves. The unique

path connecting two vertices v; u in T will be denoted by PT (v; u). For a tree T and

two vertices v, u of T , the distance dT (v; u) between them is the number of edges on the

connecting path PT (v; u). For a vertex v of T , de�ne the distance of the vertex as

gT (v) =
X

u2V (T)

dT (v; u);

the sum of distances from v to all other vertices. Let

�(T) =
1

2

X
v2V (T)

gT (v)

denote the Wiener index of T , which is the sum of distances for all unordered pairs of

vertices.

We call a tree (T; r) rooted at the vertex r (or just by T if it is clear what the root

is) by specifying a vertex r 2 V (T). For any two di�erent vertices u; v in a rooted tree

(T; r), we say that v is a successor of u, if PT (r; u) � PT (r; v). Furthermore, if u and v

are adjacent to each other and dT (r; u) = dT (r; v)� 1, we say that u is a parent of v and

v is a child of u.

If v is any vertex of a rooted tree (T; r), let T (v), the subtree induced by v, denote the

rooted subtree of T that is induced by v and all its successors in T , and is rooted at v.

The height of a vertex v of a rooted tree T with root r is hT (v) = dT (r; v), and the

height of a rooted tree T is h(T) = maxv2T hT (v), the maximum height of vertices.

A binary tree is a tree T such that every vertex of T has degree 1 or 3. A rooted binary

tree is a tree T with root r, which has exactly two children, while every other vertex of T

has degree 1 or 3. A rooted binary tree T is complete, if it has height h and 2h leaves for

some h � 0. In addition, we also take a single vertex to be a rooted binary tree of height

0.

A caterpillar tree is a tree, which has a path, such that every vertex not on the path is

adjacent to some vertex on the path. A binary caterpillar tree is a caterpillar tree, which

is also a binary tree.

For a tree T and a vertex v of T , let fT (v) denote the number of subtrees of T that

contain v, let F (T) denote the number of non-empty subtrees of T .

2 The subtree core of a tree

Much research has been devoted to de�ne the \middle part" of a tree. The �rst such

result is due to Jordan [7]. In a tree T , the branch weight of a vertex v, bw(v), is the

maximum number of edges over all subtrees of T which contain v as a leaf. By de�nition,

the centroid C(T) of T is the set of vertices minimizing the branch weight. Jordan [7]

showed that either C(T) = fcg, and bw(c) � n�1
2
, or C(T) = fc1; c2g, where c1 and c2 are

adjacent vertices with bw(c1) = bw(c2) =
n�1
2
, and in both cases all other vertices have

branch weight strictly exceeding n
2
. Zelinka [11] gave an alternative characterization of

3

the centroid: C(T) contains exactly those vertices u of V (T), which minimize the distance

function of vertices, i.e. gT (u) =
P

v2V dT (u; v).

Jordan [7] also de�ned the center of a tree T , as the set of vertices minimizing the

function eccentricity ecc(u) = maxv2V (T) dT (u; v), and showed that the center contains

one vertex or two adjacent vertices. (For a contemporary reference, see [9] 6.21 and 6.22.)
�Ad�am [1] studied further concepts of centrality in trees.

Here we are going to de�ne the \middle part" of a tree in a new way. Recall that fT (v)

denotes the number of those subtrees of T , which contain v. De�ne the subtree core of T

as the set of vertices maximizing fT (v).

Theorem 2.1. The subtree core of any tree T contains one or two vertices, and if the

subtree core contains two vertices, then they must be adjacent.

Proof. First we are going to show that fT is strictly concave along any path of T , and

hence fT is maximized at a single vertex or two adjacent vertices on any path of T .

s s s
x

X

y

Y

z

Z

T

Figure 1: x; y; z are the roots of X;Y; Z respectively.

For any tree T (Fig. 1), consider three vertices x; y; z such that xy; yz 2 E(T). Let

X;Y; Z denote the components containing x; y; z after the removal of the edges xy and

yz from T . Observe the identities

fT (x) = fX(x) + fX(x)fY (y) + fX(x)fY (y)fZ(z);

fT (z) = fZ(z) + fZ(z)fY (y) + fZ(z)fY (y)fX(x);

fT (y) = fY (y) + fX(x)fY (y) + fZ(z)fY (y) + fX(x)fY (y)fZ(z):

Comparing fT (x) + fT (z) and 2fT (y), we obtain

2fT (y)� fT (x)� fT (z) = 2fY (y) + (fX(x) + fZ(z))(fY (y)� 1) > 0;

and therefore fT (:) is strictly concave along any path of T . If fT (v) were maximized in

3 di�erent vertices of T , then any two of them must be consecutive on some path, which

yields a contradiction.

Next, we are going to show that the concept of the subtree core di�ers from both of the

concepts of the center and centroid. Consider tree T0 in Fig. 2. The center is fxg, the

centroid is fyg, while the subtree core is fzg.

4

s s s s s s s

s

s

@
@

�
�

xyz

T0

Figure 2: An example showing that the three \middle of the tree" concepts are distinct.

3 Extremal trees for the number of subtrees

It is well-known that the Wiener index among trees on n vertices is minimized by the star

K1;n�1 and is maximized by the n-vertex path Pn�1, see Entringer, Jackcon, and Snyder

[4], or Lov�asz [9] 6.23. We are going to show the counterparts of these simple results for

the number of subtrees.

Theorem 3.1. The n-vertex path Pn�1 has
�
n+1

2

�
subtrees, fewer than any other tree on

n vertices. The star K1;n�1 has 2n�1 + n � 1 subtrees, more than any other tree on n

vertices.

Proof. For T = Pn�1 (the path with n vertices), F (T) is the number of ways to choose

a sub-path (the number of ways to choose 2 out of n vertices as the end-vertices for the

sub-path, allowing that the 2 vertices being the same), so F (Pn�1) =
�
n+1

2

�
.

For any n-vertex tree T , let V (T) = fv1; v2; : : : ; vng. Then, for any 1 � i � j � n,

PT (vi; vj) is a subtree of T , so F (T) �
�
n+1

2

�
= F (Pn�1). If T is not a path, then it has

a vertex of degree � 3. This vertex and its 3 neighbors de�ne a subtree not counted by

the PT (vi; vj)'s, and therefore F (T) >
�
n+1

2

�
.

It is easy to see that F (K1;n�1) = 2n�1+n�1. We will show by induction on n, that for

any non-star n-vertex tree T , F (K1;n�1) > F (T). The base case n = 1 holds vacuously.

For any n � 2, suppose the claim holds for trees with fewer than n vertices. Let T be a

tree that maximizes F (T) among n-vertex trees. Consider 2 adjacent vertices x; y of T ,

let X;Y be the two components of T � xy after deleting the edge xy, such that x 2 X

and y 2 Y . Let us use the notation a = jV (X)j, b = jV (Y)j. Then we have a + b = n.

According to the decomposition,

F (T) = F (X) + F (Y) + fX(x)fY (y) � F (K1;a�1) + F (K1;b�1) + 2a�1+b�1 (1)

� 2a�1 + 2b�1 + n� 2 + 2n�2 � 2n�1 + 1 + n� 2 = F (K1;n�1); (2)

since the function 2x�1 + 2n�x�1 is maximized on the interval [1; n � 1] precisely in the

endpoints of that interval.

Equality holds in (1) and (2) if and only if a = 1 and Y is a star, or b = 1 and X is a

star. In both cases, T is a star as well. Thus, the induction step is completed.

To present our main results, we have to give more de�nitions. Call a rooted binary tree

ordered, if for every k � 1, the vertices at height k are put in a linear order, such that if u

and v are vertices at height k+1, and they have distinct parents, then the order between

u and v at height k + 1 is the same as the order of their parents at height k.

A rooted binary tree is good, if (i) the heights of any two of its leaf vertices di�er by

at most 1; (ii) the tree can be ordered such that the parents of the leaves at the greatest

5

height make a �nal segment in the ordering of vertices at the next-to-greatest height. For

brevity, we often refer to such trees as rgood binary trees. A single-vertex rooted binary

tree is also rgood.

A binary tree is good, if it is obtained from two rgood binary trees T1 and T2 by joining

their roots with an edge, if (i) for any two leaves, their respective heights in T1 and/or T2
di�er by at most 1; (ii) at least one of T1 and T2 is complete.

Note that good and rgood binary trees are unique in the following sense: if we have two

good (rgood) binary trees with same number of vertices, then we can label their vertices

such that they are isomorphic to each other. The concept of height can be naturally

extended to vertices of good binary trees, as shown on Fig. 3.

r

r r

r r r r

rr

���
HHH

�� @@ �� @@
�� TT

R� f0g

R� f1g

R� f2g

R� f3g

r r

r r r r

rrrr

�� @@ �� @@
�� TT�� TT

Figure 3: An rgood binary tree (on the left) and a good binary tree (on the right). Vertices

at height k of the rgood binary tree and of the two rgood parts of the good binary tree

are shown on the line R � k.

Fischermann, Ho�mann, Rautenbach, Sz�ekely, and Volkmann [5] proved:

Theorem 3.2. Among binary trees with n leaves, precisely the binary caterpillar tree

maximizes the Wiener index.

Fischermann et al. [5], and independently Jelen and Triesch [6] proved:

Theorem 3.3. Among binary trees with n leaves, precisely the good binary tree minimizes

the Wiener index.

We proved in [10]:

Theorem 3.4. Among binary trees with n leaves, precisely the good binary tree maximizes

the number of subtrees.

We publish the proof of Theorem 3.4 in a separate paper because of its length. We also

proved:

Theorem 3.5. For any n � 2, precisely the n-leaf binary caterpillar tree, which has

2n+1+2n�2�n� 4 subtrees, minimizes the number of subtrees among n-leaf binary trees.

We postpone the proof of Theorem 3.5 to a later Section.

We see here an amazing and not yet understood relationship between the Wiener index

and the number of subtrees. Unfortunately this relationship does not extend as expected.

After the results presented in this Section, it might be natural to conjecture that \within

certain classes of trees of a �xed parameter, the smaller F (T) is, the bigger �(T) is".

However, using the tree in Fig. 4 we construct binary trees T 0 and T 00, such that F (T 0) >

F (T 00) and �(T 0) > �(T 00).

In the binary tree T in Fig. 4, x and y are leaves; T1�fv1g is a complete binary tree of

height 3 on 15 vertices; T2 � fv2g is a complete binary tree of height 2 on 7 vertices; T3
is a binary caterpillar tree on 10 vertices; T4 is a binary caterpillar tree on 16 vertices.

6

s s s s s s
x v1 v2 v3 v4 y

T1 T2 T3 T4

Figure 4: Constructing a counterexample.

Let Ai = fTi(vi), Bi = gTi(vi), Ni = jV (Ti)j for i = 1; 2; 3; 4. Simple calculations show

that A1 = 677; A2 = 26; A3 = 47; A4 = 383, N1 = N4 = 16; N2 = 8; N3 = 10. It is easy to

verify that

fT (x) = 1 + A1 + A1A2 + A1A2A3 + 2A1A2A3A4;

fT (y) = 1 + A4 + A4A3 + A4A3A2 + 2A4A3A2A1;

gT (x) =

4X
i=1

(Bi + iNi) = 126 +

4X
i=1

Bi;

gT (y) =

4X
i=1

(B5�i + iN5�i) = 124 +

4X
i=1

Bi;

and therefore gT (x) > gT (y): Also,

fT (x)� fT (y) = (A1 � A4)(1 + A2A3) + (A1A2 � A3A4) = 359163 > 0:

Take any rooted binary tree X with root r, which has more than one vertex. De�ne T 0

as the union of T and X with x being identi�ed with r, and de�ne T 00 be the union of T

and X with y being identi�ed with r. Then we have the counterexample by

F (T 0)� F (T 00) = fX(r)(fT (x)� fT (y)) > 0;

�(T 0)� �(T 00) =
X

v2V (X)

dX(v; r)(gT (x)� gT (y)) > 0:

4 Alternative binary representation of integers

To �nd a formula for the number of subtrees of rgood and good binary trees will require

a novel unique representation of the number n > 1 as a sum of powers of 2 that we will

write as

n =

lX
i=1

2ki : (3)

We describe this representation recursively. We de�ne k1 by the inequality 2k1 � 2
3
n <

2k1+1. If we have already de�ned k1; k2; :::; ki�1 and
Pi�1

t=1 2
kt < n, then ki is de�ned as

7

follows: if n�
Pi�1

t=1 2
kt = 2m for some m, then ki = m and we have the terminal term in

the representation. Otherwise de�ne ki by the inequality 2ki � 2
3

�
n�

Pi�1

t=1 2
kt

�
< 2ki+1.

The de�nition of k1 di�ers only in one aspect from the de�nition of the generic ki: in

the �rst step powers of two are split further, while in the generic step they are not. This

means in particular that for any n > 1, we have l � 2. If l = 2, then k2+1 � k1 � k2 � 0,

and k1 = k2 if and only if n = 2k1+1. We always have k1 = blog2(
2
3
n)c.

The representation is clearly unique and has the properties that the terms are decreasing:

k1 � k2 � :::; and that the representation is hereditary in the following sense: if n is

represented as
Pl

i=1 2
ki , then for all j � l � 1

lX
i=j

2ki (4)

is the representation of the numerical value of the sum in (4).

We use a simple Lemma from [10]:

Lemma 4.1. Removing the root of a rooted binary tree T , we obtain two rgood induced

subtrees, T1 and T2. Assume that T1 has no more leaves than T2. Now T is rgood if and

only if one of the following conditions hold:

i) h(T1) = h(T2), and T2 is complete;

ii) h(T1) = h(T2)� 1, and T1 is complete.

Lemma 4.1 immediately implies that the terms in the novel binary representation of n

correspond to the following procedure decomposing rgood binary trees into a sequence of

complete binary trees with the same total number of leaves. We give the decomposition

recursively. In the �rst step, if the rgood binary tree T on n > 1 leaves is complete, then

the decomposition splits it into two isomorphic complete (and rgood) binary trees. In

later steps, if an emerging rgood binary tree is complete, we do not split it further. If the

emerging rgood binary tree is not complete, remove the root to obtain two induced rooted

binary trees T1 and T2. If (i) from Lemma 4.1 applies, write down T2 and consider T1 for

further splitting. If (ii) from Lemma 4.1 applies, write down T1 and consider T2 for further

splitting. It is clear that in any case the �rst complete binary tree in the decomposition

has at most 2=3 of the leaves of T , but has more than 1=3 of them.

There is another simple Lemma in [10] describing the structure of good binary trees:

Lemma 4.2. Let us be given two rgood binary trees, T 0 and T 00, such that h(T 0) � h(T 00).

Join with an edge the roots of T 0 and T 00 to obtain the binary tree T . Now T is good if

and only if one of the following conditions hold:

i) h(T 0) = h(T 00), and one or both of T 0 and T 00 is complete;

ii) h(T 0) = h(T 00)� 1, and T 0 is complete. �

It is clear from Lemma 4.2 that the novel binary representation also descibes numerically

splitting the good binary tree into two rgood binary trees by deleting the edge on R �
0, and then splitting further the arising rgood binary trees as described above for the

decomposition of rgood binary trees.

8

5 Closed formula for the number of subtrees in good

binary trees

An interesting question remaining after Theorem 3.4 is to calculate F (T) when T is a

good binary tree with n leaves. This will be done by solving a number of recurrences.

Let Rn denote the rgood binary tree on n leaves, rooted at the vertex r of degree 2. Let

fn denote the number of subtrees of Rn containing the root, i.e. fn = fRn
(r). Notice

that we suppressed the root and the tree in the notation fn. Observe the initial values

f1 = 1; f2 = 4. Next, let Fn denote the total number of subtrees in Rn, i.e. Fn = F (Rn).

Observe the initial values F1 = 1; F2 = 6. Let Gn denote the good binary tree on n

leaves. The plan to compute F (Gn) is the following: we evaluate f2k , F2k , Fn, and F (Gn)

in this order.

Counting the empty subtree as well with fn + 1, it is not hard to see the following

recurrence relationship for all k � 1:

(f2k + 1) = (f2k�1 + 1)2 + 1; (5)

and f1 = 1. Fortunately, Aho and Sloane [2] solved the recurrence relation (5) explicitly:

f2k = bq
2k+1c � 1 (6)

for k � 0, where bac is the
oor function of a, and

q = exp(

1X
i=0

2�i�1 ln(1 +
1

f2i
)) = exp(

1

2
ln 2 +

1

4
ln

5

4
+

1

8
ln

26

25
+

1

16
ln

677

676
+ : : :):

Numerically q = 1:502837 : : : : For further details, see [2].

Observe that F1 = 1 and that for all k � 1 the following recurrence relation holds:

F2k = 2F2k�1 + f2k = f2k + 2f2k�1 + 4f2k�2 + : : :+ 2k�1f21 + 2kF1: (7)

Using (6), it is easy to solve (7) by

F2k =

k�1X
i=0

2ibq2
k�i+1

c+ 1: (8)

Next, we try to compute fn based on the representation of n in (3), using the following

more general version of (5):

(fn + 1) = (f2k1 + 1)(fn�2k1 + 1) + 1: (9)

As we noted in Section 4, for every n > 1 we have l � 2. Therefore, iterating (9) yields:

(fn + 1) =

=

l�2X
i=1

iY
j=1

(f
2
kj + 1) +

lY
j=1

(f
2
kj + 1) + 1 =

l�2X
i=1

iY
j=1

bq2
kj+1

c+

lY
j=1

bq2
kj+1

c+ 1: (10)

Observe that using the decomposition of Rn described in Section 4 to generalize (7), we

obtain a recursion for Fn as well:

Fn = F2k1 + Fn�2k1 + fn: (11)

9

Solving (11) by iteration over the same decomposition, we obtain

Fn =

lX
i=1

F2ki +

l�1X
i=1

fPl

j=i
2
kj =

lX
i=1

(

ki�1X
j=0

2jbq2
ki�j+1

c+ 1) +

l�1X
i=1

fPl

j=i
2
kj : (12)

Notice that (12) still contains f -terms. Using (10) we substitute them by explicit terms

for i � l � 1:

fPl

j=i
2
kj =

l�2X
j=i

jY
s=i

bq2
ks+1

c+

lY
j=i

bq2
kj+1

c;

and then express explicitly Fn:

Fn =

lX
i=1

(

ki�1X
j=0

2jbq2
ki�j+1

c+ 1) +

l�1X
i=1

(

l�2X
j=i

jY
s=i

bq2
ks+1

c+

lY
j=i

bq2
kj+1

c): (13)

Next, observe for all n > 1 the identity

F (Gn) = Fn � 1� f2k1 � fn�2k1 (14)

holds, and gives an explicit formula to F (Gn) in view of (3), (6), (10), and (13). Indeed,

(14) is true for the following reason. Let r denote the root of Rn, let its neighbors be x

and y, such that x is the root of the subtree of 2k1 leaves. Categorise the subtrees of Rn

by the following cases: (1) does not contain any of r; x; y; (2) contains x but not r; (3)

contains y but not r; (4) contains all of x; y; r. (5) the one-vertex tree r; (6) contains r

and x but not y|there are f2k1 of them; (7) contains r and y but not x|there are fn�2k1
of them. Deleting r and joining x to y establishes a bijection between subtrees of Gn and

subtrees of Rn in the cases (1){(4).

From the formula (14) and (16) one can obtain F (Gn) for small values of n as shown in

the table below. The table also includes F �(Gn), the number of subtrees of Gn containing

at least one leaf. Formula (16) will determine F �(Gn).

n 1 2 3 4 5 6 7

fn 1 4 10 25 55 130 286

Fn 1 6 17 37 78 173 340

F (Gn) 3 11 28 63 143 304

F �(Gn) 3 10 25 57 132 287

6 Some proofs

The main goal of this section is to prove Theorem 3.5. We do not give however, the

simplest proof that we know. Instead, we prove two lemmas that we need in [10] to prove

Theorem 3.4. In Sections 7 and 8 we twist these lemmas further to adapt them for the

solution of two other extremal problems, also optimized by good trees among binary trees

with given number of vertices and leaves.

Consider the tree T in Fig. 5, with leaves x and y, and PT (x; y) = xx1 : : : xnzyn : : : y1y

(xx1 : : : xnyn : : : y1y) if dT (x; y) is even (odd), for any n � 0

After the deletion of all the edges of PT (x; y) from T , some connected components will

remain. Let Xi denote the component that contains xi, let Yi denote the component that

contains yi, for i = 1; 2; : : : ; n, and let Z denote the component that contains z. Set

ai = fXi
(xi) and bi = fYi(yi) for i = 1; : : : ; n, and c = fZ(z).

10

s s s s s s s
x x1 xn z yn y1 y

X1 Xn

Z
Yn Y1

: : : : : :

Figure 5: Path PT (x; y) connecting leaves x and y.

Lemma 6.1. In the situation described above, if ai � bi for i = 1; 2; : : : ; n; then fT (x) �
fT (y): Furthermore, fT (x) = fT (y) if and only if n = 0 or ai = bi for all i.

Proof. We cover the case when z and Z occur, a similar argument works when z and Z

do not occur. Denote by N = c
Qn

i=1(aibi) the number of subtrees that contain both x

and y. We have

fT (x) = 1 +

nX
k=1

(

kY
i=1

ai) + c(

nY
i=1

ai) + c(

nY
i=1

ai)(

nX
k=1

(

nY
j=n+1�k

bj)) +N ;

fT (y) = 1 +

nX
k=1

(

kY
j=1

bj) + c(

nY
j=1

bj) + c(

nY
j=1

bj)(

nX
k=1

(

nY
i=n+1�k

ai)) +N ;

Then we have fT (x)� fT (y) =

nX
k=1

(

kY
i=1

ai �

kY
j=1

bj) + c(

nY
i=1

ai �

nY
j=1

bj) + c

nX
k=1

(

n�kY
i=1

ai �

n�kY
j=1

bj)(

nY
l=n+1�k

albl) � 0;

with strict inequality if ai > bi for any i 2 f1; 2; : : : ; ng.

s s s sPP
PP

P

�����

��
��

�

PPPPP

PP
PP

P

�����

��
��

�

PPPPP

x y
TX Y

x y
TY X

T 0 T 00

Figure 6: Switching subtrees rooted at x and y.

If we have a tree T with leaves x and y, and two rooted trees X and Y , then we can

build two new trees, �rst T 0, by identifying the root of X with x and the root of Y with

y, second T 00, by identifying the root of X with y and the root of Y with x. Under the

circumstances below we can tell which composite tree has more subtrees.

Lemma 6.2. If fT (x) > fT (y) and fX(x) < fY (y), then we have

F (T 00) > F (T 0):

11

Proof. When T 0 changes to T 00, the number of subtrees which contain both or neither of

x and y do not change, so we only need to consider the number of subtrees which contain

precisely one of x and y. For T 0, the number of subtrees which contain x but not y is

fX(x)(fT (x)�N);

the number of the subtrees which contain y but not x is

fY (y)(fT (y)�N);

where N is the number of subtrees of T that contain both x and y. Similarly, for T 00,

these two numbers are

fY (y)(fT (x)�N) and fX(x)(fT (y)�N):

We have

F (T 00)� F (T 0) = (fY (y)� fX(x))(fT (x)� fT (y)) > 0:

We use Lemmas 6.1 and 6.2 to prove Theorem 3.5.

Proof. Let Cn denote the binary caterpillar with n � 2 leaves as in Fig. 7. First we are

going to calculate F (Cn). We start with observing F (C2) = 3. For n � 3 we have the

following recurrence relationship for F (Cn):

F (Cn) = F (Cn�1) + 3fCn�1
(vn�1) + 2;

where F (Cn�1) is the number of subtrees of Cn which contain neither of vn nor un�1;

3fCn�1
(vn�1) + 2 is the number of subtrees of Cn which contain un�1 but not vn, vn but

not un�1, or both un�1 and vn. Also, we have the following recurrence relationship for

fCn
(vn):

fCn
(vn) = 2fCn�1

(vn�1) + 1;

since for each subtree S of Cn�1 counted in fCn�1
(vn�1), T1 = S [fvng and T2 = S [

fvng [fun�1g is each a subtree of Cn that contains vn. And 1 in the formula counts vn
itself as a subtree of Cn that contains vn.

It follows that fCn
(vn) = 2n�1 + 2n�2 � 1, as fC2(v2) = 2. Thus, we can easily calculate

that F (Cn) = 2n+1 + 2n�2 � n� 4.

s s s s s s s

s ssss

v1 v2 v3 v4 vn�2 vn�1 vn

u3u2 u4 un�2 un�1

: : :

Figure 7: A caterpillar tree with n leaves

Let now T be a binary tree with n leaves that minimizes F (T), and suppose (for con-

tradiction) that T is not a caterpillar. Note that this implies n � 3.

12

s s s s s s s

s ss

vm vm�1 vi0+1
vi0(x1) vi0�1 v1(y1)

y(Y)

ui0(x)

X1

X

u1

: : : : : :

T

Figure 8: T not being a binary caterpillar tree.

Let P = vmvm�1 : : : v1y be a longest path in T . Clearly m � 2. Then vm and y must be

leaves. Let ui be the neighbor of vi that is not on P , for i = 1; 2; : : : ;m � 1. Note that

the ui's exist, since T is a binary tree. It is easy to see that um�1 and u1 must be leaves

by the choice of P . Let

i0 = minf i 2 f1; 2; : : : ;m� 1g s.t. ui is not a leaf g;

i0 exists since T is not a caterpillar tree, and we have T as shown in Fig. 8.

To use Lemma 6.1, substitute

x ui0;x1 vi0 ; y1 v1; : : : ;

then we have X;X1; : : :, Y; Y1; : : : ; (and Z if necessary) respectively as in Lemma 6.1.

Notice that we obtain Y fyg, a single vertex tree, and observe that fX(x) > fY (y),

and a1 > b1 = 2, ai = bi = 2 for all the other i. By Lemma 6.1, we have fS(x) > fS(y),

where S = (TnX) [fxg.
Hence, we can apply Lemma 6.2 and it follows that if we interchange X and Y (which is

actually moving X to y), we will decrease F (T), while not changing the number of leaves

Thus, we have a contradiction, and hence T is a caterpillar.

7 Further relation between F (T) and �(T)

The lemmas in this paper can be modi�ed (which we will outline below) to prove The-

orems 3.2 and 3.3. First, notice that for two rgood binary trees T and T 0 with roots r

and r0 respectively, then one is always a subtree of the other. Therefore we have

gT (r) > gT 0(r
0) , jV (T)j > jV (T 0)j and

gT (r) = gT 0(r
0) , jV (T)j = jV (T 0)j:

Consider now the same tree as in the Lemma 6.1, shown at Fig. 5, and set

a0i = gXi
(xi), Ni = jV (Xi)j and b0i = gYi(yi), Mi = jV (Yi)j for i = 1; 2; : : : ; n, and

c0 = gZ(z), N = jV (Z)j. (Note that z and Z exist if and only if dT (x; y) is even).

Lemma0 6.1 If Ni � Mi for i = 1; 2; : : : ; n, then gT (x) � gT (y). Furthermore, gT (x) =

gT (y) if and only if n = 0 or Ni =Mi for any 1 � i � n.

13

Proof. If z and Z occur, we have

gT (x) =

nX
i=1

iNi + (n+ 1)N +

nX
j=1

(2n+ 2� j)Mj +

nX
i=1

a0i +

nX
j=1

b0j + c0 + 2n;

gT (y) =

nX
i=1

iMi + (n+ 1)N +

nX
j=1

(2n+ 2� j)Nj +

nX
i=1

a0i +

nX
j=1

b0j + c0 + 2n:

It is not hard to see that gT (x)� gT (y) =

=

nX
i=1

i(Ni �Mi) +

nX
j=1

(2n+ 2� j)(Mj �Nj) =

nX
i=1

(2i� 2n� 2)(Ni �Mi) � 0;

with strict inequality if Ni > Mi for any i 2 f1; 2; : : : ; ng.

A similar argument works if z and Z do not occur.

Consider the trees T 0 and T 00 in Lemma 6.2. Then we have

Lemma0 6.2 If gT (x) < gT (y) and jV (X)j > jV (Y)j, then �(T 00) > �(T 0).

Proof. Similar to the proof of Lemma 6.2, we only need to consider the paths which

contain one and only one of x and y. For T 0, the sum of the lengths of the paths which

contain x but not y is

gX(x)jV (T)j+ (gT (x)� dT (x; y))jV (X)j;

the sum of the lengths of the paths which contain y but not x is

gY (y)jV (T)j+ (gT (y)� dT (x; y))jV (Y)j:

Similarly, for T 00, these two numbers are

gY (y)jV (T)j+ (gT (x)� dT (x; y))jV (Y)j;

and

gX(x)jV (T)j+ (gT (y)� dT (x; y))jV (X)j:

Therefore �(T 0)� �(T 00) =

= gT (x)jV (X)j+ gT (y)jV (Y)j � gT (x)jV (Y)j � gT (y)jV (X)j

= (gT (x)� gT (y))(jV (X)j � jV (Y)j) < 0:

Using arguments similar to those in the proofs of Theorems 3.5, Theorem 3.2 about the

maximization of the Wiener index among binary trees can be proved using the lemmas

above. To obtain an alternative proof to Theorem 3.3 of Fischermann et al. [5] about

the minimization of the Wiener index among binary trees, one has to repeat, mutatis

mutandis, the proof of Theorem 3.4, as it is written in [10]. For guidance, we state below

the most crucial lemma. Before that, we have to make some additional de�nitions and

conventions.

If T is a rooted binary tree with root r, and r1; r2 are the children of r, then we will

simply write T1 for T (r1) and T2 for T (r2). We assign the labels r1 and r2 according the

following rule: jV (T2)j � jV (T1)j. Ti will be rooted at ri, i = 1; 2. We de�ne recursively

Ti1i2:::ik1 and Ti1i2:::ik2 to be the two rooted binary trees induced by the children of the root

14

of Ti1i2:::ik , if Ti1i2:::ik is not a single vertex, where ij 2 f1; 2g, j = 1; 2; : : : ; k. We assign

the labels ri1i2:::ik1 and ri1i2:::ik2 according the following rule:

jV (Ti1i2:::ik2)j � jV (Ti1i2:::ik1)j: (15)

We complete the recursive de�nition by letting ri1i2:::ik be the root for Ti1i2:::ik .

Lemma 7.1. Assume T is a binary tree that minimizes �(T) among n-leaf binary trees.

Assume that T is divided into two rooted subtrees T 0, T 00 by the removal of the edge v0v00

as shown in Fig. 4 in [10]. Then, if for all k � 1 the inequalities

jV (T 0)j > jV ((T 00)2 : : : 21| {z }
k 20s

)j

hold, then T 00 is rgood.

8 Subtrees with at least one leaf

Knudsen [8] provided a multiple parsimony alignment with aÆne gap cost using a phylo-

genetic tree. In bounding the time complexity of his algorithm, a factor was the number

of so-called \acceptable residue con�guration". In our terms, it is the number of subtrees

containing at least one leaf vertex. Knudsen estimated the maximum number of accept-

able residue con�gurations over all binary trees. Here we show that good binary trees

have the largest number of acceptable residue con�gurations and provide a formula to

compute the number of them. Knudsen's estimate easily follows from the formula.

To complement our earlier results, we show that caterpillar trees minimize the number of

acceptable residue con�gurations, and also study Knudsen's problem for arbitrary trees.

We give some formal de�nitions. For a tree T and a vertex v 2 V (T), let f�T (v) denote

the number of subtrees of T which contain v and at least one leaf di�erent from v; and

let F �(T) denote the number of subtrees of T which contain at least one leaf. If T is a

single-vertex tree, then f�T and F � vanishes on it.

Theorem 8.1. Among trees on n � 3 vertices, the path Pn�1 minimizes F � with F �(Pn�1) =

2n� 1; while the star K1;n�1 maximizes F � with F �(K1;n�1) = 2n�1 + n� 2.

Proof. For T = Pn�1, F
�(T) = F (Pn�1)� F (Pn�3) = 2n� 1.

For any n-vertex tree T , let V (T) = fv1; v2; : : : ; vng. Let v1; vn be two of the leaves of

T (since a tree T has at least 2 leaves for n � 3). Then, for any 1 � i � n, PT (v1; vi) and

PT (vn; vi) are subtrees of T that contain at least a leaf, so F �(T) � 2n � 1 (PT (v1; vn)

was counted twice in the above analysis). If T is not a path, then it has at least another

leaf, say v2, then the single vertex v2 is not counted, and therefore F �(T) > 2n� 1.

It is easy to see that F �(K1;n�1) = F (K1;n�1)� 1 = 2n�1 + n� 2.

For any n-vertex tree T , F �(T) = F (T) � F (H) where H is the subtree obtained by

deleting all the leaves of T . We already know that F (T) � F (K1;n�1) = 2n�1 + n � 1.

For n � 3, T have at least one vertex that is not a leaf, and hence F (H) � 1. Thus,

F �(T) � F (K1;n�1)� 1 = 2n�1 + n� 2.

Equality holds in the above if and only if T = K1;n�1.

15

Theorem00 3.4 If T is a binary tree that maximizes F �(T) among n-leaf binary trees,

then T must be good. �

Theorem00 3.5 Among n-leaf binary trees, the caterpillar tree minimizes F �(T). �

We postpone the sketch of Theorem00 3.4 to the next section, and we leave the proof of

Theorem00 3.5 to the reader.

Using the notation Gn from Section 5, we have that

Theorem 8.2. The maximum value of F �(T) among n-leaf binary trees is

F �(Gn) =

�
F (Gn)� F (Gn

2
) if n even,

F (Gn)�
2
3
F (Gn�1

2

)� 1
3
F (Gn+1

2

)� 1
3

if n odd.
(16)

Proof. The maximizing tree is good, so T = Gn, and F (Gn) counts all of its subtrees. If

n is even, then for correction, from F (Gn) we have to subtract the number of subtrees of

H, where H is the tree obtained from T deleting all leaves. If n is even, then H is also a

good binary tree, but on n
2
vertices.

If n is odd, then there is a problem: after the deletion of leaves the remaining tree is

not binary.

Make a drawing of Gn as described at the de�nition of goodness, and label the leaves

from left to right as v1; v2; : : : ; vn. Let vk be the last leaf of height h(Gn) � 1. Then k

must be odd. Let x be the parent of vk and u be the other child of x. Observe that the

children of u are vk+1 and vk+2 (see Fig. 9). Again, let H be obtained from Gn by deleting

all leaves, and let Gn�1

2

be obtained from H by deleting u. Then we have

F �(Gn) = F (Gn)� F (H) (17)

and

F (H) = F (Gn�1

2

) + 1 + fGn�1
2

(x): (18)

q q q q q q q q

q q q q

q q q q q q q q q q

q q

�
�

�
�
A
A

A
A

�
�
A
A

�
�
A
A

�
�

@
@

�
�

@
@

JJ

JJ

JJ

JJ

JJ
v1 vk

u

x

vk+1vk+2 vn

q q q q q

q q q q

q q

A
A

�
�
A
A

�
�
A
A

�
�

@
@

�
�

@
@

u

x

Figure 9: Left: Gn; right: H, H n fug = Gn�1

2

and H [f(x; vk)g = Gn+1

2

.

Observe the identity

3fGn�1
2

(x) = F (Gn+1

2

)� F (Gn�1

2

)� 2: (19)

We justify (19) with a case analysis referring to Fig. 9. A subtree of Gn+1

2

= H [f(x; vk)g

can be a fug, fvkg, a subtree of Gn�1

2

= Hnfug, or a subtree of Gn�1

2

= Hnfug containing

x with one or two elements of fu; vkg added.
Now the second case of (16) follows from equations (17), (18), and (19).

Similar to the subtree core, we de�ne the f�-subtree core of a tree T as the set of vertices

maximizing f�T (v).

16

Theorem 8.3. Assume that the tree T has no vertices of degree 2. Then the f�-subtree

core of the tree T contains one or two vertices, and if the f�-subtree core contains two

vertices, then they must be adjacent.

Proof. As in the proof of Theorem 2.1, it is enough to show that f�T is strictly concave

along any path of T .

For any tree T (Fig. 1), consider three vertices x; y; z such that xy; yz 2 E(T). Let

X;Y; Z denote the components containing x; y; z after the removal of the edges xy and

yz from T . \Cancelling" with subtrees containing both x; y and a leaf, (both y; z and a

leaf) we obtain the identities

f�T (y)� f�T (x) = f�Y [Z(y)� f�X(x);

f�T (y)� f�T (z) = f�X[Y (y)� f�Z(z):

Since the degree of x and y is not 2, Y nfyg is not empty and hence f�Y [Z(y) > f�Z(z) and

f�X[Y (y) > f�X(x). Comparing f�T (x) + f�T (z) and 2f�T (y), we obtain

2f�T (y)� f�T (x)� f�T (z) = f�Y [Z(y) + f�X[Y (y)� f�X(x)� f�Z(z) > 0:

Note: The result above is not true for every tree. Take for example the path T = Pn,

where every non-leaf vertex is in the f�-subtree core.

9 Key Lemmas toward Theorem00 3.4

Consider again the tree in Lemma 6.1 (Fig. 5), and use from there the notation ai, bi,

and c. Let a00i = f�Xi
(xi), b

00

i = f�Yi(yi), for i = 1; 2; : : : ; n and c00 = f�Z(z). (Note that z and

Z exist if and only if dT (x; y) is even.)

Lemma006.1 If ai � bi and a
00

i � b00i for i = 1; 2; : : : ; n; then

fT (x) � fT (y) (20)

and

f�T (x) � f�T (y): (21)

Furthermore, if a strict inequality ai > bi holds for any i, i 2 f1; 2; : : : ; ng, then we have

strict inequalities in (20) and (21).

Proof. We consider only the case when z and Z occur, the other case is similar. Lemma 6.1

already proved part of the conclusion (20) in Lemma 6.1. Let us consider the following

families of subtrees of T :

Ai = the set of subtrees of T which contain x, xi, and at least one other

leaf, and do not contain xi+1 (or z if i = n);

A = the set of subtrees of T which contain x, z and at least one other

leaf, and do not contain any yn;

Ci = the set of subtrees of T which contain x, yi, and at least one

other leaf, and do not contain yi�1 (or z if i = 1);

17

Bi = the set of subtrees of T which contain y, yi and at least one other

leaf, and do not contain yi+1 or (z for i = n);

B = the set of subtrees of T which contain y, z and at least one

other leaf, and do not contain xn;

Di = the set of subtrees of T which contain y, xi, and at least one

other leaf and do not contain xi�1 (or z if i = 1).

The following identities follow from a simple case analysis:

f�T (x) = jAj+

nX
i=1

(jAij+ jCij); f�T (y) = jBj +

nX
i=1

(jBij+ jDij):

We are going to show by establishing injections that for i = 1; 2; : : : ; n

jAij � jBij; jAj � jBj; jCij � jDij;

and hence

f�T (x) � f�T (y);

with strict inequality if and only if any of the conditions has strict inequality.

We give an injection from Bi to Ai as follows.

For t = 1; 2; :::; n, observe that Yt has no more subtrees containing yt than subtrees of

Xt containing xt by the assumption at � bt; and furthermore, Yt has no more subtrees

containing yt and at least one more leaf than subtrees of Xt containing xt and at least

one more leaf by the assumption a00t � b00t . Therefore, one can construct an a map �t,

which maps subtrees of Xt containing xt to subtrees of Yt containing yt in an injective

way, which has an additional property that subtrees containing at least one more leaf are

mapped to subtrees containing at least one more leaf.

Consider the map � which assigns to an F 2 Ai the ordered i-tuple of trees (F \X1; F \

X2; :::; F \ Xi); and the map � which assigns to an H 2 Bi the ordered i-tuple of trees

(H \Y1; H \Y2; :::; H \Yi). These maps are injective and their ranges include all i-tuples

in which every component restricted to Xi (Yi) also contains xi (yi). Now the injection

from Bi to Ai is the following:

H 2 Bi 7! ��1
�
�1(H \ Y1); �2(H \ Y2); :::; �i(H \ Yi)

�
:

Also, this map puts subtrees containing other leaves than y to subtrees containing other

leaves than x.

We give an injection from Di to Ci as below. The injection from B to A can be

constructed similarly and we leave it to the reader.

Consider the map �0 which assigns to an F 2 Ci the ordered i-tuple of trees (F \X1; F \

X2; :::; F\Xi�1; F\(([
n
j=iXj)[Z[([

n
j=iYj))); and the map �0 which assigns to anH 2 Di

the ordered i-tuple of trees (H \Y1; H \Y2; :::; H \Yi� 1; H \ (([nj=iXj)[Z [([
n
j=iYj))).

Now the injection from Di to Ci is the following:

H 2 Di 7! �0�1
�
�1(H\Y1); �2(H\Y2); :::; �i�1(H\Yi�1; H\(([

n
j=iXj)[Z[([

n
j=iYj)))

�
:

Also, this map puts subtrees containing other leaves than y to subtrees containing other

leaves than x.

18

We introduce a new notation f 0T (v) = fT (v) � f�T (v) to denote the number of subtrees

of a tree T which contain v 2 V (T) and no other leaf.

Lemma006.2 Consider now T 0 and T 00 from Lemma 6.2. If

fT (x) > fT (y); f�T (x) > f�T (y)

and

f 0X(x) < f 0Y (y); f�X(x) < f�Y (y);

then F �(T 00) > F �(T 0).

Proof. Let N� denote the number of subtrees of T which contain at least one leaf other

than x; y and contain both x and y; and let N denote the number of subtrees of T which

contain both x and y Let c(T 0; x; y) (c(T 00; x; y)) denote the number of subtrees of T 0

(T 00), which contain both x, y, and in addition at least one more leaf. A simple bijective

argument shows c(T 0; x; y) = c(T 00; x; y). Similarly, let d(T 0; x; y) (d(T 00; x; y)) denote the

number of subtrees of T 0 (T 00), which contain none of x, y, but has at least one leaf. Again,

a simple bijective argument shows d(T 0; x; y) = d(T 00; x; y). We make a case analysis as

x 2; y 2; x =2 y =2; x 2 y =2; x =2 y 2, and use inclusion-exclusion in the last two cases:

F �(T 0) = c(T 0; x; y) + d(T 0; x; y)

+ fX(x)(f
�

T (x)�N�) + f�X(x)(fT (x)�N)� f�X(x)(f
�

T (x)�N�)

+ fY (y)(f
�

T (y)�N�) + f�Y (y)(fT (y)�N)� f�Y (y)(f
�

T (y)�N�);

F �(T 00) = c(T 00; x; y) + d(T 00; x; y)

+ fY (y)(f
�

T (x)�N�) + f�Y (y)(fT (x)�N)� f�Y (y)(f
�

T (x)�N�)

+ fX(x)(f
�

T (y)�N�) + f�X(x)(fT (y)�N)� f�X(x)(f
�

T (y)�N�):

Hence we have

F �(T 0)� F �(T 00)

= (f 0X(x)� f 0Y (y))(f
�

T (x)� f�T (y)) + (f�X(x)� f�Y (y))(fT (x)� fT (y)) < 0:

For the study of F � and f� on binary trees, we are going to label vertices and subtrees

as described as follows. Note that this is di�erent from the labelling in [10] and from the

labelling in Section 7, (15). However, for rgood trees, all three labellings are the same, as

we will see in Lemma 9.1.

If T is a rooted binary tree with root r, and r1; r2 are the children of r, then we will

simply write T1 for T (r1) and T2 for T (r2). We assign the labels r1 and r2 according to

the following rule: h(T2) � h(T1), and fT2(r2) � fT1(r1) in case equality holds in the �rst

inequality. Ti will be rooted at ri, i = 1; 2. We de�ne recursively Ti1i2:::ik1 and Ti1i2:::ik2 to

be the two rooted binary trees induced by the children of the root of Ti1i2:::ik , when Ti1i2:::ik
is not a single vertex, where ij 2 f1; 2g, j = 1; 2; : : : ; k. We assign the labels ri1i2:::ik1 and

ri1i2:::ik2 according to the following rule:

h(Ti1i2:::ik2) � h(Ti1i2:::ik1);

19

and in the case of equality,

fTi1i2:::ik2(ri1i2:::ik2) � fTi1i2:::ik1(ri1i2:::ik1): (22)

We complete the recursive de�nition by letting ri1i2:::ik be the root for Ti1i2:::ik .

The following observation is trivial and we leave the proof to the reader.

Lemma 9.1. For rgood trees (T1; v1) and (T2; v2), the following are equivalent:

f�T2(v2) > f�T1(v1); f 0T2(v2) > f 0T1(v1); fT2(v2) > fT1(v1); jV (T2)j > jV (T1)j:

Therefore, for subtrees of rgood trees, we can go back and forth with our di�erent ways

of labelling in [10] and in this present proof.

Lemma 9.2. For any rooted binary tree T with root r,

f�T (r) > f 0T (r) and f�T (r) >
1
2
fT (r): (23)

Proof. Assume T has m leaves. Since T is a rooted binary tree, it has m � 2 non-leaf

vertices.

Then f�T (r) � 2m � 1, since di�erent non-empty subsets of leaves, with r added, span

di�erent subtrees. On the other hand, f 0T (r) � 2m�2, since the number of lea
ess subtrees

containing r is at most the number of subsets of all non-leaf, non-root vertices.

The second inequality easily follows.

Lemma 9.3. For any rooted binary tree (T; r), and the induced subtree of the son r2,

(T2; r2), we have

f�T (r) � 2f�T2(r2):

Proof. For every subtree of T2 which contains r2 and a leaf, we construct two subtrees of

T containing r and a leaf. For the �rst, add to the tree the rr2 edge, for the second, add

to the tree the rr1 and rr2 edges.

Lemma 9.4. For any rooted tree T with root r, and any r0 2 V (T) (r0 6= r), consider the

induced subtree T 0 = T (r0) rooted at r0. Then we have

f�T (r) > f�T 0(r
0): (24)

If T 00 is obtained from T by deleting some vertices, but not r, then

f�T (r) > f�T 00(r): (25)

Proof. To prove (24) with an injection, extend with the r0r path the subtrees of T 0 that

we count. To prove (25), if l00 is a leaf of T 00 but not a leaf of T with an injection, assign

to l00 a leaf l of T , such that l00 separates r and l in T , and for every l00 and corresponding

(distinct!) l �x the path ll00. Extend every subtree of T 00 that we have to count, for all its

new leaves, with the ll00 paths. This is an injection into the set of subtrees of T that we

have to count.

Lemma 9.5. For any rooted binary tree (T; r), we have

fT (r) � 2k+1f�T2 : : : 21| {z }
k 20s

(r2 : : : 21| {z }
k 20s

): (26)

20

Proof. By Lemma 9.3, we have

f�T (r) � 2f�T2(r2) � : : : � 2kf�T2 : : : 2| {z }
k 20s

(r2 : : : 2| {z }
k 20s

): (27)

Also, Lemma 9.3 implies for any rooted binary tree (T; r) that f�T (r) � 2f�T1(r1), and thus

f�T2 : : : 2| {z }
k 20s

(r2 : : : 2| {z }
k 20s

) � 2f�T2 : : : 21| {z }
k 20s

(r2 : : : 21| {z }
k 20s

): (28)

Thus, (27), (28) and the fact that fT (r) � f�T (r) yield (26).

10 Proof to Theorem00 3.4

Based on Lemmas above, Theorem00 3.5 and Theorem00 3.4 can be proved. We outline

only the proof of Theorem00 3.4. The reader has to read [10] parallel, since we highlight

only the steps that require modi�cation. The �gures in [10] will help at reading. As in

[10], we use superscripts on some inequalities to indicate their proofs.

Lemma 10.1. Assume T is an optimal binary tree that maximizes F �(T). Assume that

T is divided into two rooted subtrees T 0, T 00 by the removal of an edge v0v00. Then, if for

all k � 1 the inequalities

fT 0(v
0) > f(T 00)2 : : : 21| {z }

k 20s

(v002 : : : 21| {z }
k 20s

) and f�T 0(v
0) > f�(T 00)2 : : : 21| {z }

k 20s

(v002 : : : 21| {z }
k 20s

) (29)

hold as far as vertex v002 : : : 21| {z }
k 20s

exists, then T 00 is rgood.

Note: We understand that (29) holds if (T 00)21 does not exist. Then (T 00)2 is a single

vertex, and by (22) (T 00)1 is also a single vertex. Therefore T 00 is rgood as Lemma 10.1

requires.

Proof. The proof goes by induction on jV (T 00)j. The base case: if jV (T 00)j = 1, then by

de�nition, T 00 is rgood. Now, suppose that Lemma 10.1 holds for any induced subtree in

place of T 00 with fewer vertices. We are going to show the following:

Claim 10.1. (T 00)1 and (T 00)2 are rgood.

Proof. We prove the statement for (T 00)2 and (T 00)1 in a di�erent order than in [10]. Proof

for (T 00)2. Consider T as being divided into T 000 = ((T 00)2; v
00

2) and T � = (T 0 [(T 00)1 [

fv00g; v00). Notice that for any k � 1

fT �(v
00) > fT 0(v

0) >(29) f(T 00)2 : : : 21| {z }
k+1 20s

(v002 : : : 21| {z }
k+1 20s

) = f(T 000)2 : : : 21| {z }
k 20s

(v002 : : : 21| {z }
k+1 20s

);

and

f�T �(v
00) >(25) f�T 0(v

0) >(29) f�(T 00)2 : : : 21| {z }
k+1 20s

(v002 : : : 21| {z }
k+1 20s

) = f�(T 000)2 : : : 21| {z }
k 20s

(v002 : : : 21| {z }
k+1 20s

);

thus (29) holds for T � and T 000. By hypothesis, it follows that (T 00)2 must be rgood.

21

Proof for (T 00)1. Since (T 00)2 is rgood and of height at least h((T 00)1), then (T 00)2 con-

tains a complete subtree of height h(T 00)1 � 1 and hence a subtree that is isomorphic to

(T 00)12 : : : 21| {z }
k 20s

. This will explain the middle inequalities in the next two displayed formulas.

Now consider T as being divided into T 000 = ((T 00)1; v
00

1) and T � = (T 0 [(T 00)2 [fv
00g; v00).

We have for any k � 1,

fT �(v
00) > f(T 00)2(v

00

2) > f(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

) = f(T 000)2 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

);

and

f�T �(v
00) >(25) f�(T 00)2(v

00

2) > f�(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

) = f�(T 000)2 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

);

thus (29) holds for T � and T 000. By hypothesis, it follows that (T 00)1 is rgood.

After this point, since ((T 00)1; v
00

1) and ((T 00)2; v
00

2) are both rgood, we have that

f�Hi1i2:::ik2
(vi1i2:::ik2) � f�Hi1i2:::ik1

(vi1i2:::ik1);

f 0Hi1i2:::ik2
(vi1i2:::ik2) � f 0Hi1i2:::ik1

(vi1i2:::ik1);

fHi1i2:::ik2
(vi1i2:::ik2) � fHi1i2:::ik1

(vi1i2:::ik1)

holds for (H; v) = ((T 00)1; v
00

1) or (H; v) = ((T 00)2; v
00

2).

Knowing that (T 00)1 and (T 00)2 are rgood, we return to the inductive step in the proof

of Lemma 10.1. We consider the following cases: (i) h((T 00)1) < h((T 00)2) and (ii)

h((T 00)1) = h((T 00)2). (Note that the third inequality h((T 00)1) > h((T 00)2) is impossi-

ble by the rgoodness of (T 00)1 and (T 00)2 and (22)).

Case (i): h((T 00)1) < h((T 00)2).

By Lemma 9.1, we also have jV ((T 00)2)j > jV ((T
00)1)j, f

�

(T 00)2
(v002) > f�(T 00)1(v

00

1), and

f(T 00)2(v
00

2) > f(T 00)1(v
00

1).

Claim 10.2. For any k � 0 such that (T 00)1 : : : 1| {z }
k

is not empty, we have

jV ((T 00)1 : : : 1| {z }
k

)j � jV ((T 00)22 : : : 2| {z }
k+1

)j: (30)

Proof. Apply the same induction as in [10] till (13) in [10], then we are in the position to

apply Lemma00 6.1 in the same setting as in [10].

Using the notation in Lemma00 6.1, we have

ai = f(T 00)1 : : : 12| {z }
l+1�i 10s

(v001 : : : 12| {z }
l+1�i 10s

) + 1 � f(T 00)22 : : : 21| {z }
l+2�i 20s

(v0022 : : : 21| {z }
l+2�i 20s

) + 1 = bi (31)

exactly as in [10], and

a00i = f�(T 00)1 : : : 12| {z }
l+1�i 10s

(v001 : : : 12| {z }
l+1�i 10s

) + 1 � f�(T 00)22 : : : 21| {z }
l+2�i 20s

(v0022 : : : 21| {z }
l+2�i 20s

) + 1 = b00i (32)

22

for i = 1; 2; : : : ; l by Lemma 9.1 and the rgoodness of proper induced rooted subtrees of

T 00. We also have

al+1 = fT 0(v
0) + 1 > f(T 00)21(v

00

21) + 1 = bl+1

as in [10] by (29) , and then Lemma 9.1 implies

a00l+1 = f�T 0(v
0) + 1 > f�(T 00)21(v

00

21) + 1 = b00l+1:

From here, we obtain the conclusion of Lemma00 6.1, which is exactly the �rst condition

of Lemma00 6.2 as well:

fS(x) > fS(y) and f�S(x) > f�S(y):

Note that we have

fX(x) = f(T 00)1 : : : 11| {z }
l+1

(v001 : : : 11| {z }
l+1

) < f(T 00)22 : : : 22| {z }
l+2

(v0022 : : : 22| {z }
l+2

) = fY (y) (33)

exactly as in [10], then (33) implies f�X(x) < f�Y (y) and f 0X(x) < f 0Y (y) (the second

condition of Lemma00 6.2) by Lemma 9.1 and the rgoodness of proper rooted subtrees of

T 00.

Thus, by Lemma00 6.2, interchanging X and Y increases F �(T), contradicting the opti-

mality of T . Hence (30) holds for k = l + 1, and we completed the induction proof.

With Claim 10.2, the same proof as in [10] shows that T 00 is rgood. End of Case (i).

Case (ii): h((T 00)1) = h((T 00)2).

Claim 10.3. For any k � 0 such that (T 00)21 : : : 1| {z }
k 10s

is not empty, we have

jV ((T 00)21 : : : 1| {z }
k 10s

)j � jV ((T 00)12 : : : 2| {z }
k 20s

)j (34)

Proof. Apply the same induction as in [10] till (20) in [10], then we are in the position to

apply Lemma00 6.1 in the same setting as in [10]. Using the notation in Lemma00 6.1, we

have

ai = f(T 00)21 : : : 12| {z }
l+1�i 10s

(v0021 : : : 12| {z }
l+1�i 10s

) + 1 � f(T 00)12 : : : 21| {z }
l+1�i 20s

(v0012 : : : 21| {z }
l+1�i 20s

) + 1 = bi (35)

and

a00i = f�(T 00)21 : : : 12| {z }
l+1�i 10s

(v0021 : : : 12| {z }
l+1�i 10s

) + 1 � f�(T 00)12 : : : 21| {z }
l+1�i 20s

(v0012 : : : 21| {z }
l+1�i 20s

) + 1 = b00i (36)

for i = 1; 2; : : : ; l + 1 by Lemma 9.1 and the rgoodness of proper induced subtrees of T 00.

In fact, strict inequality holds in (35) for i = 1 and therefore a1 > b1. From here, we

obtain the conclusion of Lemma00 6.1, which is exactly the �rst condition of Lemma00 6.2

as well:

fS(x) > fS(y) and f�S(x) > f�S(y):

Note that we have:

fX(x) = f(T 00)21 : : : 11| {z }
l+1 10s

(v0021 : : : 11| {z }
l+1 10s

) < f(T 00)12 : : : 22| {z }
l+1 20s

(v0012 : : : 22| {z }
l+1 20s

) = fY (y) (37)

23

exactly as in [10], then (37) implies f�X(x) < f�Y (y) and f 0X(x) < f 0Y (y) (the second

condition of Lemma00 6.2) by Lemma 9.1 and the rgoodness of proper rooted subtrees of

T 00.

Thus, by Lemma00 6.2, interchanging X and Y increases F �(T), contradicting the opti-

mality of T . Hence (34) holds for k = l + 1. Using induction, we proved Claim 10.3.

With Lemma 10.3, same proof as in [10] shows that T 00 is rgood. End of Proof of

Lemma 10.1.

Lemma 10.2. Consider an optimal tree T and its two rooted subtrees T 0 and T 00 after

an edge deletion, as in Lemma 10.1. If jh(T 00)� h(T 0)j � 1, then T 0 and T 00 both must be

rgood.

Note that if we choose a longest path P and choose (v0; v00) as the closest to middle edge

on P , we obtain such a T 0 and T 00.

Proof. Assume without loss of generality that fT 00(v
00) � fT 0(v

0). Then, we have for k � 1

that

fT 00(v
00) � fT 0(v

0) > f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

)

and

f�T 00(v
00) >(23) 1

2
fT 00(v

00) �
1

2
fT 0(v

0) �(26) 2kf�(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

)

> f�(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

):

Thus condition (29) holds, T 0 is rgood.

On the one hand, since T 0 is rgood, T 0 must contain a complete rooted binary tree

T �, with the same root, of height at least h(T 0) � 1 � h(T 00) � 2. On the other hand,

(T 00)2 : : : 21| {z }
k 20s

is of height at most h(T 00) � 2 and is isomorphic to a subtree of T 0 (sharing

the same root). Therefore

fT 0(v
0) � f(T 00)2 : : : 21| {z }

k 20s

and f�T 0(v
0) � f�(T 00)2 : : : 21| {z }

k 20s

(38)

for k � 1. In fact, (38) are always strict inequalities, since T 0 has some other vertices

than those in the complete rooted binary tree with height h(T 0) � 1. So condition (29)

holds, T 00 is also rgood.

Lemma 10.3. Consider an optimal tree T and its two rooted subtrees T 0 and T 00 after

an edge deletion, such that jh(T 00)� h(T 0)j � 1. Assume that fT 00(v
00) � fT 0(v

0) (and also

f�T 00(v
00) � f�T 0(v

0) by Lemma 9.1). Then T 0 is complete or T � = (T 0 [(T 00)1 [fv
00g; v00) is

rgood.

24

Proof. Consider T as being divided into T � and (T 00)2. The proof in [10] yields for any

k � 0

f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

) < f(T 00)2(v
00

2): (39)

Then Lemma 9.1 yields for any k � 0

f�(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

) < f�(T 00)2(v
00

2): (40)

Similarly, notice that (T 00)1 is rgood, and then for k � 0,

f(T 00)2(v
00

2) � f(T 00)1(v
00

1) > f(T 00)11(v
00

11) � f(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

) (41)

and by Lemma 9.1

f�(T 00)2(v
00

2) > f�(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

): (42)

Combining (39) and (41), we obtain that for any k � 0,

f(T 00)2(v
00

2) > max

�
f(T 0)2 : : : 21| {z }

k 20s

(v02 : : : 21| {z }
k 20s

); f(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

)

�
: (43)

Since (T �)2 = T 0 or (T 00)1, we have from (43) that

f(T 00)2(v
00

2) > f(T �)2 : : : 21| {z }
k+1 20s

(r�) for k � 0;

where r� is the root of (T �)2 : : : 21| {z }
k+1 20s

.

Similarly, combining (40) and (42), we obtain that for any k � 0,

f�(T 00)2(v
00

2) > max

�
f�(T 0)2 : : : 21| {z }

k 20s

(v02 : : : 21| {z }
k 20s

); f�(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

)

�
: (44)

Since (T �)2 = T 0 or (T 00)1, we have from (44) that

f�(T 00)2(v
00

2) > f�(T �)2 : : : 21| {z }
k+1 20s

(r�) for k � 0; (45)

where r� is the root of (T �)2 : : : 21| {z }
k+1 20s

.

So by (43) and (45) condition (29) holds, T � is rgood by Lemma 10.1.

With the above Lemmas, the proof of Theorem00 3.4 is almost exactly the same as in

[10], one has to change only (34), (36), (37), and the formula after (37). (For each of

these formulas, if the condition holds for f in [10], then it holds for both f and f�.)

Acknowledgement We are indebted to (i) Istv�an Mikl�os for letting us know Knudsen's

results, (ii) to A. Kostochka, J. Skokan, and D. B. West for conversations on the topic of

this paper during his visit at UIUC, (iii) to �Eva Czabarka for several important suggestions

after her reading of a draft of this paper.

25

References

[1] �Ad�am, A., The centrality of vertices in trees, Studia Sci. Math. Hung. 9 (1974),

285{303.

[2] Aho, A. V.; Sloane, N. J. A., Some doubly exponential sequences, Fibonacci Quart.

11 (4) (1973), 429{437.

[3] Dobrynin, A.A., Entringer, R., Gutman, I., Wiener index of trees: Theory and

applications, Acta Appl. Math. 66 (3) (2001), 211{249.

[4] Entringer, R.C., Jackson, D.E., Snyder, D.A., Distance in graphs, Czechoslovak Math.

J. 26 (101) (1976), 283{296.

[5] Fischermann, M., Ho�mann, A., Rautenbach, D., Sz�ekely, L.A., Volkmann, L.,

Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (1{3)

(2002), 127{137.

[6] Jelen, F., Triesch, E., Superdominance order and distance of trees with bounded

maximum degree, Discrete Appl. Math. 125 (2{3) (2003), 225{233.

[7] Jordan, C., Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869), 185{190.

[8] Knudsen, B., Optimal multiple parsimony alignment with aÆne gap cost using a

phylogenetic tree, Lecture Notes in Bioinformatics 2812, Springer Verlag, 2003, 433{

446.

[9] Lov�asz, L., Combinatorial Problems and Exercises, 2nd ed., North{Holland Publish-

ing Co., Amsterdam, 1993.

[10] Sz�ekely, L.A., Wang, H., Binary trees with the largest number of subtrees, submitted.

[11] Zelinka, H., Medians and peripherians of trees, Arch. Math. (Brno) 4 (1968), 87{95.

26

