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ON THE VARIATIONAL DISTANCE OF TWO TREES∗

By M. A. Steel and L. A. Székely

University of Canterbury and University of South Carolina

A widely-studied model for generating sequences is to ‘evolve’
them on a tree according to a symmetric Markov process. We prove
that model trees tend to be maximally “far apart” in terms of varia-
tional distance.

1. Introduction. In this paper we investigate sequences that have been
generated on the tree by a simple Markov model. Such processes are widely-
studied in molecular genetics, and in other areas of applied probability (in-
cluding broadcasting and statistical physics). More precisely, we study the
separation—as measured by variational distance—of the probability distri-
bution on sequence patterns generated by different trees. We find that a
large tree generates a probability distribution that is typically at maximal
distance from that generated by nearly all other trees.

To describe our results more precisely we first provide some terminology
concerning trees and random processes on them. In a tree, vertices of degree
1 are called leaves, as opposed to internal vertices. A tree is binary, if all
vertices have degree 1 or 3. Consider a set X of labels. A phylogenetic X-
tree is a tree, in which leaves are identified with elements of X. (We do not
require phylogenetic X-trees be binary by definition for technical reasons, as
we will have to deal with subtrees of phylogenetic X-trees.) We will regard
two phylogenetic X-trees as being identical, if there is a graph isomorphism
between them, which in addition, if restricted to X, is the identity function
of X. If |X| = n, then the number of different binary phylogenetic X-trees
is (2n − 5)!! (= 1 × 3 × 5 × · · · × (2n − 5)) [16]. For a phylogenetic X-tree
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2 M. A. STEEL AND L. A. SZÉKELY

T , let [T ] denote the corresponding unlabelled tree. The distance dT (u, v)
between two vertices, u, v in a tree T is the number of edges on the unique
path connecting them.

We now describe a model for the evolution of binary sequences on a tree.
This model has been described by various authors (and in a range of dis-
ciplines including molecular biology, information theory, and physics; for
references see [8, 16]). Here we refer to this model as the CFN model (short
for ‘Cavender-Farris-Neyman model’); it has also been referred to in the lit-
erature as the ‘symmetric binary channel’ and the ‘symmetric 2-state Pois-
son model’. The CFN model provides a simple model for the evolution of
purine–pyrimidine sequences. The significance of this simple model is, that
phenomena shown for the CFN model often extends to more realistic models
of sequence evolution, and we will describe how our main results concerning
the CFN model generalise. The term CFN tree will refer to a phylogenetic
X-tree equipped with a CFN model.

Suppose we have two states, 0 and 1, and a phylogenetic X-tree T . The
CFN model assigns probabilities to the patterns of state of the elements
of X as follows. Let us associate a number pe (0 < pe < 1/2) with the
edge e called the transition probability. Let ξe denote a random indicator
variable associated to edge e with P[ξe = 1] = pe, and assume the ξe’s
are independent. Fix any vertex v and assign state 0 or 1 to v with equal
probability 1/2. Note that for every vertex u of T there is a unique path
denoted path(u, v) in T and so we may define

(1.1) state(u) = state(v) +
∑

e∈path(u,v)

ξe mod 2.

This gives a (joint) probability distribution on the set of all assignment of
states (0 or 1) to the vertices of T , and thereby a marginal distribution
on state assignments to the leaves of T – we call each such assignment
χ : X → {0, 1} a (state) pattern, and we let Pχ denote the probability of
generating χ under this model.

The CFN model is thus specified by the pair (T ,P), where P is the map
that associated to each edge e its transition probability p(e). We refer to T
as a CFN tree and P as a transition mechanism.

The probability p that the endpoints of a path uw in a CFN tree T are
in different states is nicely related to the transition probabilities of edges of
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the uw-path:

(1.2) p =
1
2

(
1−

∏
e∈path(u,w)

(1− 2pe)

)
.

Formula (1.2) is well-known, and is easy to prove by induction. Formula
(1.2) also shows that the transition probability of a path is not less than
the largest transition probability on its edges. It is well-known ([18]) that
(1) changing the location of v in T , or (2) substituting a path by a single
edge in a CFN tree, and assigning to the new edge a transition probability
according to (1.2) does not change the probability distribution of patterns.

Usually k independent experiments are made to generate random pat-
terns from a binary CFN tree T , they are called sites. The (abstract) phy-
logeny reconstruction problem is the following: from the observed pattern
frequencies, determine with a prescribed probability, what was the underly-
ing binary phylogenetic X-tree. We have shown in [6] that if |X| = n and
n → ∞, then k = Ω(log n) sites are needed to return the true underlying
tree with probability at least 1

2 + ε with either a deterministic algorithm or
with a randomized algorithm whose random bits are independent from the
random events on the CFN tree. Sequence length requirements for accurate
tree reconstruction is not only of mathematical interest, but also a topical
issue in molecular systematics (eg. [3, 15]). We showed in [6] that for fixed
0 < f ≤ g < 1/2, f ≤ pe ≤ g, and n →∞, phylogeny reconstruction is pos-
sible for all model trees, when k is a certain polynomial of n; is possible for
some model trees, when k is a logarithmic function of n; and is possible for
almost all model trees, either in the uniform random binary X-tree model
or in the Yule–Harding model, when k is a certain polylogarithmic function
of n. More recent work by E. Mossel and colleagues [5, 12] has established
further instances for which logarithmic dependence of k on n suffices for
accurate tree reconstruction and cases for which polynomial dependence is
necessary.

In this paper we show asymptotic results. The theorems are about n-leaf
trees, but their conclusions are o(1) (limit) relations as n → ∞. The un-
derstanding is that for a sequence of n-leaf trees satisfying the hypotheses,
the limit relation holds. It would be technically more proper to speak about
sequences of trees in the statements of the theorems, but we follow the tradi-
tion of random graph theory ([1, 4]) not speaking explicitly about sequences.
With the exception of Section 4 we study problems where the bounds on pe

are fixed, and we let n →∞. In Section 4 we show that many of the results
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4 M. A. STEEL AND L. A. SZÉKELY

generalize if dependence of the bounds on n is allowed but limited.

2. Results. Let us be given two binary phylogenetic X-trees T1,T2 with
CFN transition mechanism P1 and P2, respectively. The variational distance
of their pattern distributions is

(2.1) vardist
(

(T1,P1), (T2,P2)
)

=
∑
χ

∣∣∣∣(P1)χ − (P2)χ
∣∣∣∣.

This distance lies between 0 and 2, and in Theorem 3.1 we show that almost
all binary trees are maximally distant (in terms of variational distance) from
any given binary tree with a given CFN transition mechanism, under mild
assumptions on their transition mechanisms. A practitioner may argue that
Theorem 3.1 has limited relevance, since the uniform distribution of trees is
just one particular prior distribution on trees, and the CFN model is very
particular. However, the conclusion of Theorem 3.1 holds not just for the
counting measure, but for all permutation invariant measures on phyloge-
netic X-trees; moreover it holds for more general, and for the applications
more realistic classes of transition mechanisms (Theorem 4.1). This result
may not be surprising: as we equip randomly selected trees with CFN mod-
els, they have many local statistics that are essentially independent and have
different marginals in the two trees. Therefore, analogously to the Kakutani
Dichotomy, their measures are expected to be (near) orthogonal.

Farach and Kannan [9], [10] designed an algorithm for phylogeny recon-
struction based on convergence to the true tree in variational distance and
suggested to pay more attention to the variational distance in phylogeny
reconstruction. Some support for the utility of this metric is provided by re-
sults that we present in Sections 3 and 4: if we get just close to a model tree
in variational distance, then we already excluded most of the false candidates
for the phylogenetic tree.

However, a simple fact provides a sharp contrast to the results mentioned
above. Note that in practice we estimate the model distribution of patterns
by the observed frequency of patterns. For sub-exponential sequence length,
which is known to be sufficient for phylogeny reconstruction with probability
1 − o(1) as 0 < f ≤ g < 1/2 fixed and f ≤ pe ≤ g, as n → ∞ (see the
discussion in Section 1), the variational distance between the model pattern
distribution and the observed pattern distribution is near 2 with probability
1− o(1). (For details, see our technical report [19].)
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In other words, phylogeny reconstruction is well possible without conver-
gence of the observed pattern distribution to the model pattern distribution
in variational distance.

Therefore the accuracy of tree reconstruction cannot be captured by vari-
ational distance alone. This conclusion was suggested by [7] and [14], though
with less explicit theoretical justification.

3. Variational distance of CFN trees is typically large.

Theorem 3.1. Fix 0 < f and g < 1/2. There exists a function ε(n) =
εf,g(n) = o(1) as n →∞, such that for every binary phylogenetic X-tree T1

with CFN transition mechanism P1 where pe ≤ g in P1, the following holds:
For almost all (i.e. (1 − o(1))(2n − 5)!! in number) binary phylogenetic X-
trees T2, equipped with an arbitrary transition mechanism P2, where f ≤ pe

in P2, we have

(3.1) vardist
(

(T1,P1), (T2,P2)
)
≥ 2− ε(n).

The proof requires a number of lemmas, which we now state.

Lemma 3.2. For every binary phylogenetic X-tree T on n ≥ 4 leaves,
there are at least n/4 disjoint pairs of leaves ai, bi, such that for every i:

(i) ai and bi are separated by a distance of 2 or 3;

(ii) for i 6= j, the aibi and the ajbj paths in T are edge disjoint.

Proof. The claim is true for 4 ≤ n ≤ 8, since then any longest path
ends in two disjoint cherries. This is the basis for an induction proof on n.
It is easy to see that, for n ≥ 9, there exists a longest path in T , for which
one end must be a leaf in a cherry that lies at the top portion of the tree
given by one of the four cases shown in Fig. 1 (the other end of the path
lies in the bottom part of the tree, represented by a circle). In each of the
four cases truncate the tree Ti as indicated by the dashed curve to obtain
T ′

i . For i = 1, 2, 3, 4, T ′
i has n− 2 (resp. n− 2, n− 3, n− 4) leaves, and the

induction hypothesis applies to T ′
i . In all four cases it is easy to add two new

close vertex pairs to create the required set of them for Ti, while destroying
at most one which pre-existed in T ′

i .
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T1 T2 T3 T4

T ′
1 T ′

2 T ′
3 T ′

4

Fig 1. Ending of a longest path in a binary tree.

Fig 2. Binary tree on 4t + 9 leaves, with only t + 3 close leaf pairs.

Remark 3.3. As Fig. 2 shows, the conclusion of Lemma 3.2 is essen-
tially the best possible.

Lemma 3.4. Tree-chopping lemma [Steel, Goldstein, and Waterman [17]
Lemma 3]
Let T be an arbitrary binary X-tree and q ≥ 2 integer. Then edges can be
deleted from T such that a forest results with the following properties:

(i) The number of leaves from X in any tree of the forest is at most
2q − 2.

(ii) The number of leaves from X in any tree of the forest is at least q,
except possibly for one tree. (We shall call this exceptional tree degen-
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erate.)

Recall the Azuma–Hoeffding inequality (see [1]):

Lemma 3.5. Suppose X = (X1,X2, . . . ,Xk) are independent random
variables taking values in any set S, and L : Sk → R is any function that
satisfies the condition: |L(u) − L(v)| ≤ t whenever u and v differ at just
one coordinate. Then,

(3.2) P [|L(X)− E[L(X)]| ≥ λ] ≤ 2 exp

(
− λ2

2t2k

)
. 2

The following lemma is obvious.

Lemma 3.6. Let F denote a fixed phylogenetic X-tree, with |X| = n,
and let τ = [F ] (the corresponding unlabelled tree). Let π be a randomly
selected permutation of X under the uniform distribution. Let π(F) denote
the phylogenetic X-tree that we obtain from F by changing all leaf labels from
v to π(v) simultaneously. Then π(F) represents a random uniform selection
from those binary phylogenetic X-trees whose underlying unlabelled tree is
τ . 2

From now on, for notational convenience, we pretend that 4 divides n.

Lemma 3.7. For an X with |X| = n, and n/4 disjoint ai, bi ordered pairs
from X, there exist functions m(n) →∞, h(n) →∞, and g(n) →∞, such
that the following holds. For every unlabelled binary tree τ with n leaves,
for all but a 1

g(n) fraction of binary phylogenetic X-trees T with property
[T ] = τ , there is an index set I such that |I| = m(n) and

(i) dT (ai, bi) ≥ h(n) for all i ∈ I; and

(ii) for i, j ∈ I, i 6= j, pathT (ai, bi) and pathT (aj , bj) are edge disjoint.

Proof. Let F denote a fixed binary phylogenetic X-tree such that [F ] =
τ , with |X| = n. Apply Lemma 3.4 to F with q = dlog2 ne. Let L1, L2, ..., Ls

denote the leaf sets that the non-degenerate trees contain from X. From
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8 M. A. STEEL AND L. A. SZÉKELY

the lemma, q ≤ |Li| ≤ 2q − 2, and at most q − 1 element of X are not in
some Li. Let π be a randomly selected permutation of X under the uniform
distribution. Let π(F) denote the phylogenetic X-tree that we obtain from
F by changing all leaf labels from v to π(v) simultaneously. According to
Lemma 3.6, π(F) represents a random uniform selection from those binary
phylogenetic X-trees whose underlying unlabelled tree is τ . The previous
application of Lemma 3.4 still partitions π(F), the leaf sets of the non-
degenerate trees intersect X in π(L1), π(L2), ..., π(Ls), and we still have
q ≤ |π(Li)| ≤ 2q−2. Therefore, for i 6= j, if pathi

π(F) (respectively, pathj
π(F))

connects an arbitrary pair of vertices of Li (respectively Lj) in the tree π(F),
then

(3.3) pathiiπ(F) is edge disjoint from pathj
π(F).

Set h(n) = log log n and m(n) = n
4q−2 −

1
2 . Observe from Lemma 3.4 and

the choice of q that n ≤ (s + 1)(2q − 2), and therefore

(3.4) m(n) ≤ s

2
.

We are going to find an appropriate g(n) for this choice. We call a leaf
set Y ⊂ X infected, if there is a 1 ≤ j ≤ n/4, such that both aj , bj ∈ Y .
Let E denote the event that for our fixed τ and F , π(F) has the property
that for all j = 1, 2, ..., s, π(Lj) is infected; and let F denote the event
that in addition to E, for at least half of the indices j = 1, 2, ..., s, one
finds some ij , such that both aij , bij ∈ π(Lj) (i.e. they do infect π(Lj)) and
dπ(F)(aij , bij ) ≥ h(n). In view of (3.3), the aij , bij paths in π(F) are pairwise
edge disjoint for j = 1, 2, ..., s.

Observe that

(3.5) P[π(Lj) not infected] =

∑|Lj |
u=0

(n/4
u

)
2u
( n/2
|Lj |−u

)
( n
|Lj |
) .

(A non-infected Lj can have zero or one element from every (ai, bi) pair,
for i = 1, 2, ..., n/4. The case analysis is based on the number u = |π(Lj) ∩
{ai, bi : i = 1, 2, ..., n/4}|. There are

(n/4
u

)
to select a subset of u indices from

{1, 2, ..., n/4}, and then 2u ways to tell if ai or bi selected for the particular
index set into Lj . There are

( n/2
|Lj |−u

)
ways to make Lj complete using |Lj|−u

elements not belonging to {ai, bi : i = 1, 2, ..., n/4}.)

Comparison of consecutive terms show that the largest term in the nu-
merator of the RHS of (3.5) is u = |Lj |. Using the usual notation (x)m for
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the mth falling factorial, it follows that

(3.6) P[π(Lj) not infected] ≤
(|Lj |+ 1)2|Lj |(n/4

|Lj |
)

( n
|Lj |
)

(3.7) =
(n/4)|Lj |
(n)|Lj |

(|Lj |+ 1)2|Lj | ≤ n|Lj|

4|Lj |(n− |Lj|)|Lj |
(|Lj |+ 1)2|Lj |

(3.8) ≤ (1 + o(1))2−|Lj |(|Lj |+ 1) ≤ (1 + o(1))2−q(2q − 1) ≤ 2−.01 log2 n,

and from (3.6-3.7-3.8),

(3.9) P[∃ j : π(Lj) not infected] ≤ n

q
2−.01 log2 n.

By (3.9), we showed that

(3.10) P[E] > 1− n2−.01 log2 n.

Call the ordered s-tuple of pairwise disjoint sets Y1, Y2, ..., Ys ⊂ X feasible, if
|Yi| = |Li| and Yi is infected for i = 1, 2, ..., s. Now we turn to the conditional
probability P[F |E]. Observe

P[F |E] =
∑

Y1,Y2,...,Ys feasible

P

[
F
∣∣∀i : π(Li) = Yi

]
P

[
∀i : π(Li) = Yi

]
(3.11)

≤ max
Y1,Y2,...,Ys feasible

P

[
F
∣∣∀i : π(Li) = Yi

]
.(3.12)

Assume now that an arbitrary feasible Y1, Y2, ..., Ys is fixed. A π that satisfies
the condition in (3.12) is nothing else but the juxtaposition of πi : Li → Yi

bijections for i = 1, 2, ..., s + 1. Therefore a uniform random π satisfying
the condition in (3.12) can be realized by a sequence of independent uniform
random choices of bijections πi from Li to Yi, i = 1, 2, ..., s + 1.

Let πi : Li → Yi denote a uniform random bijection for i = 1, 2, ..., s + 1.
Conditional on E, for every i = 1, 2, ..., s, fix an aij , bij leaf pair that infects
Yi. Observe that the conditional event

F
∣∣∀i : π(Li) = Yi

is implied, if for at least half of the indices 1 ≤ i ≤ s, we have dπ(F)(aij , bij ) ≥
h(n). Also observe that notwithstanding the notation dπ(F), this distance
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depends only on the single πi under consideration. No matter what is the
value of π−1

i (aij ), at most 2h(n) vertices of Li can be closer than h(n) to
π−1

i (aij ) in the binary tree F . Those at most 2h(n) vertices can be pre-images
of bij under πi (and π as well), if dπ(F)(aij , bij ) < h(n). Therefore,

P

[
dπ(F)(aij , bij ) ≥ h(n)

]
≥ 1− 2h(n)

|Li|
= 1− 2log log n

log2 n
= 1− 1

log2−log 2 n
.

Hence, a lower bound for P[F |E] is the probability of at least s/2 successes in
a sequence of s independent Bernoulli trials, each with probability of success
p = 1 − 1

log2−log 2 n
. Not having at least m(n) successes implies not having

at least s/2 successes by (3.4), and probability of the latter event can easily
be bounded from above by Lemma 3.5 (t = 1, k = s, λ = s/3), as soon as

1
log2−log 2 n

< 1/6, by

(3.13) 2e−s/18.

Finally, using (3.10) and (3.13), we have

(3.14) 1−P[F ] = 1−P[E]+P[E]
(
1−P[F |E]

)
≤ n2−.01 log2 n+2e−n/(64 log2 n),

and since the RHS of (3.14) is o(n), we can take for g(n) its reciprocal.

Proof of Theorem 3.1 Specify now n/4 leaf pairs {ai, bi} of T1 according
to Lemma 3.2—for notational convenience we assume again that n is a
multiple of 4. We set m(n), h(n), g(n), and I according to the statement
of Lemma 3.7. We are going to show that for every fixed (T1,P1) and fixed
unlabelled tree τ , if [T2] = τ and T2 is not in the exceptional set of trees
described in Lemma 3.7, then the variational distance between (T1,P1) and
(T2,P2) differs from 2 by at most an quantity that is o(1) as a function of n.
Recall that state(x) denotes the state of leaf x ∈ X in a CFN tree. Consider
the random indicator variable Zi, which is 1, if state(ai) = state(bi), and
0 otherwise, and Z =

∑
i∈I Zi, which depends on the distribution of leaf

colorations of the CFN tree. We will speak about Z
(1)
i , Z(1) and Z

(2)
i , Z(2)

as the CFN tree is (T1,P1) or (T2,P2), and similarly about state1 and state2,
and will drop the superscript if the argument applies to both.

By the linearity of expectation

(3.15) E[Z] =
∑
i∈I

E[Zi] =
∑
i∈I

P[state(ai) = state(bi)].
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In (T1,P1), we have P[state1(ai) 6= state1(bi)] ≤ 1
2

(
1− (1− 2g)3

)
, by (1.2),

and hence

(3.16) 1− 3g + 6g2 − 4g3 ≤ P[state1(ai) = state1(bi)]

Formula (3.15) and inequality (3.16) imply that

(3.17) E[Z(1)] ≥ (1− 3g + 6g2 − 4g3))m(n)

In (T2,P2), by a similar argument, we have

(3.18) P[state2(ai) = state2(bi)] ≤ 1− 1
2

(
1− (1− 2f)h(n)

)
=

1
2

+ o(1)

by (1.2), and h(n) →∞. By linearity (3.15), we have

(3.19) E[Z(2)] ≤ (1 + o(1))
m(n)

2
.

We are going to show to that with high probability both Z(1) and Z(2)

are very close to their respective expectations. This will be easy to show,
since both of them are the sums of independent indicator variables. (Use
Lemma 3.5 for Xi = Z

(1)
i (resp. Z

(2)
i ), k = m(n), t = 1, λ = m(n)2/3.)

It is easy to see that for 0 < g < 1/2, we have

(3.20) 1/2 < 1− 3g + 6g2 − 4g3,

and therefore, using (3.17) and (3.19), E[Z(1)] and E[Z(2)] are separated by a
linear function of m(n), for example l(n) = 1

2(1− 3g + 6g2 − 4g3 + 1
2)m(n).

Consider now the event H: “Z > l(n)”. In (T1,P1), event H has probability
1−o(1), while in (T2,P2), the complement of event H has probability 1−o(1).
This implies that the variational distance of (T1,P1) and (T2,P2) is 2−o(1).

2

4. Variational distance in more general models. In this section
we provide a result (Theorem 4.1) that is a three–fold generalization of
Theorem 3.1. The three extensions allow (i) more general probability distri-
butions on trees (‘permutation-invariant measures’), (ii) more general tran-
sition models than the CFN model (‘conservative, separable processes’) and
(iii) a weakening of the constraints on the parameters of the model.
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12 M. A. STEEL AND L. A. SZÉKELY

Permutation-invariant measures on trees. Let us call a measure µ on
the set of (2n−5)!! binary phylogenetic X-trees permutation invariant, if for
every π permutation of X and any phylogenetic X-tree F , µ(F) = µ(π(F)).
Note that Lemma 3.6 stated that the uniform distribution (or counting
measure) on binary phylogenetic X-trees is permutation invariant. A prac-
titioner may argue that Theorem 3.1 has limited relevance, since the uniform
distribution of trees is just one particular prior distribution on trees. How-
ever, any relevant distribution of trees is permutation invariant and it is easy
to see that the stronger Theorem 3.1 holds with basically the same proof.
A non-uniform, phylogenetically relevant permutation invariant distribution
on phylogenetic X-trees is the unrooted Yule-Harding distribution [6].

More general transition processes (conservative, separable pro-
cesses). The restriction of the CFN to two states and symmetric transition
probabilities is convenient for description and proofs. However much of the
argument used in the proof of Theorem 3.1 can be generalized to models
that are much closer to those used in modern molecular biology. We identify
two key properties that are used in the proof, and that both apply to a range
of substitution models.

Suppose we have a set S of q ≥ 2 states. A pattern will now refer to
a state assignment function χ : X −→ S, where X is the leaf set of T .
Assume that we have a probability distribution on the patterns of a bi-
nary phylogenetic X-tree, where Pχ denotes the probability of pattern χ.
Selecting a random pattern according to the distribution, we can observe
a random state of any particular leave. For a pair of leaves a, b let E(a, b)
be the event that state(a) = state(b). Let us be given a strictly decreasing
function H : [0,∞) → (c, 1] with H(0) = 1, and a c > 0 constant, such that
limx→∞H(x) = c. We assume that H and c are fixed and do not depend on
n. We say that a probability distribution on patterns is conservative if

(C) there exists an assignment of t(e) > 0 to each edge e of T ,
so that the following condition holds: For each pair a, b ∈ X,
P[E(a, b)] = H(

∑
e∈path(a,b) t(e)).

The CFN model satisfies condition (C), as can easily be seen from (1.2)
by taking t(e) = −1

2 log(1 − 2pe), H(x) = 1
2(1 + exp(−2x)), and c = 1

2 .
More generally, condition (C) is satisfied by any tree-based Markov process
that can realised by a stationary, reversible, continuous-time Markov process
operating on each edge e of T for a duration (corresponding to t(e)) (this is
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Theorem 4(2) of [18]; for more details on such models see [16]).

Next, we say that a probability distribution on patterns is separable if it
satisfies the following property:

(S) Whenever (a1, b1), (a1, b2), . . . , (am, bm) are pairs of leaves whose con-
necting paths are pairwise edge-disjoint then {E(ai, bi), i = 1, . . . ,m}
are independent events.

It is easily seen that the CFN model is separable. Moreover, any group-based
model satisfies the separation condition (S) (Theorem 10 of [21], generalizing
[11]); briefly, ‘group-based models’ are defined in the same way as the CFN
model, but over an arbitrary finite abelian group, rather than the particular
group ({0, 1},+mod2) (for more details see [16]).

We will call a model that satisfies conditions (C) and (S) a conservative,
separable process. Examples of such models include the CFN model, and
more generally the symmetric q–state model, for which, when a transition
occurs, one of the remaining states is selected uniformly at random. For
this model we have c = 1

q in condition (C), and this model is well-known
in a variety of field, including physics, broadcasting and molecular biology,
where it is referred to as the ‘q–state Potts model’, the ‘q–ary symmetric
channel’, and the ‘Neyman q–state model’, respectively (and, in the special
case when q = 4, as the ‘Jukes-Cantor model’); for more details see [13]. A
further example of a conservative, separable process in molecular biology is
the Kimura 3ST model (for details see [16]).

Weakened constraints. In Theorem 3.1 we imposed the condition f ≤
pe for a fixed f > 0 for the transition mechanism P2. In fact an inspection
of the proof reveals that 0 < f = f(n) may depend on n, as far as we have
limn→∞ h(n)f(n) = ∞, where h(n) is any function satisfying the statement
of Lemma 3.7. (The present proof of Lemma 3.7 allows f(n) → 0 “very
slowly”, but the truth is likely just “slowly”.)

The result allowing these three types of extension is the following.

Theorem 4.1. Fix 0 < t+ < ∞, and allow t− = t−(n) > 0 to vary
with n if still limn→∞ h(n)t−(n) = ∞, where h(n) is any function satisfying
the statement of Lemma 3.7. For every binary phylogenetic X-tree T1 with
a conservative, separable process P1 where t(e) ≤ t+ in P1, and any µ per-
mutation invariant measure on phylogenetic X-trees, the following holds for
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a function ε(n) = o(1). The set of binary phylogenetic X-trees of measure
1 − o(1) has the property, that any of them equipped with an arbitrary con-
servative, separable process P2, with t(e) ≥ t− in P2 (assuming P2 has the
same H and c as P1) has

(4.1) vardist
(

(T1,P1), (T2,P2)
)
≥ 2− ε(n).

Proof. We need a straightforward modification of the proof of Theo-
rem 3.1. Leaving out the subscript from the notation for the generic leaf
pair (ai, bi), formula (3.16) can be substituted by

(4.2) H(3t+) ≤ H

(
dT1(a, b)t+

)
≤ P[state1(a) = state1(b)];

(3.18) can be substituted by

(4.3) P[state2(a) = state2(b)] ≤ H

(
dT2(a, b)t−

)
≤ H

(
h(n)t−

)
< c + ε

for any fixed ε > 0 as n →∞. For a sufficiently small ε > 0, we have

(4.4) c + ε < H(3t+)

(this follows from the assumptions on H and c), and thus inequality (4.4)
substitutes for (3.20).
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