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Introduction

Local cohomology is a useful tool in several branches of commutative algebra
and algebraic geometry. The main aim of this series of lectures is to illustrate a
few of these techniques. The material presented in the sequel needs some basic
knowledge about commutative resp. homological algebra. The basic chapters of the
textbooks [9], [28], and [48] are a recommended reading for the preparation. The
author’s intention was to present applications of local cohomology in addition to the
examples in these textbooks as well as those of [7].

Several times the author applies spectral sequence techniques for the proofs. Often
people claim that it is possible to avoid spectral sequence arguments in the proofs for
certain results. The present author believes that these techniques are quite natural.
They will give deep insights in the underlying structure. So he forced these kinds of
arguments even in cases where he knows more ‘elementary’ proofs. He has the hope
to interest more researchers working in commutative algebra for such a powerful
technique. As an introduction to spectral sequences he suggests the study of the
corresponding chapters in the textbooks [9] and [48].

In the first section there is an introduction to local duality and dualizing com-
plexes. There is a consequent use of the Čech complexes. In the main result, see 1.6,
there is a family of dualities, including Matlis duality and duality for a dualizing
complex of a complete local ring. This approach does not use ‘sophisticated’ pre-
requisites like derived categories. It is based on a few results about complexes and
flat resp. injective modules. As applications there are a proof of the local duality
theorem and vanishing theorems of the local cohomology of the canonical module.
In particular it follows that a factorial domain is a Cohen-Macaulay ring provided it
is a ‘half way’ Cohen-Macaulay ring. The first section concludes with a discussion of
the cohomological annihilators Ann Hn

a (M) of a finitely generated A-module M and
an ideal a. The consideration of these annihilators provides more subtle information
than vanishing results.

Section 2 is concerned with the structure of the local cohomology modules in
‘small’ resp. ‘large’ homological dimensions. The ‘small’ homological dimension has
to do with ideal transforms. To this end there is a generalization of Chevalley’s
theorem about the equivalence of ideal topologies. This is applied in order to prove
Grothendieck’s finiteness result for ideal transforms. The structure of particular
cases of ideal transforms of certain Rees rings is a main technical tool for the study of
asymptotic prime divisors. On the other side of the range, i.e. the ‘large’ homological
dimensions, there is a proof of the Lichtenbaum-Hartshorne vanishing theorem for
local cohomology. In fact the non-vanishing of the d-dimensional local cohomology of
a d-dimensional local ring is the obstruction for the equivalence of a certain topology
to the adic topology. The Lichtenbaum-Hartshorne vanishing theorem is a helpful
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tool for the proof of a connectedness result invented by G. Faltings. We do not relate
our considerations to a more detailed study of the cohomological dimension of an
ideal. For results on cohomological dimensions see R. Hartshorne’s article [16]. For
more recent developments compare C. Huneke’s and G. Lyubeznik’s work in [22].

The third Section is devoted to the study of finite free resolutions of an A-
module M in terms of its local cohomology modules. There are length estimates for
Extn

A(M, N) and TorA
n (M, N) for two finitely generated A-modules M, N such that

M ⊗A N is of finite length. This leads to an equality of the Auslander-Buchsbaum
type, first studied by M. Auslander in [1], and a Cohen-Macaulay criterion. More-
over there are estimates of the Betti numbers of M in terms of the Betti numbers of
the modules of deficiency of M. More subtle considerations are included in the case
of graded modules over graded rings. This leads to the study of the Castelnuovo-
Mumford regularity and a generalization of M. Green’s duality result for certain
Betti numbers of M and its canonical module KM .

The author’s aim is to present several pictures about the powerful tool of local
cohomology in different fields of commutative algebra and algebraic geometry. Of
course the collection of known applications is not exhausted. The reader may feel a
challenge to continue with the study of local cohomology in his own field. In most
of the cases the author tried to present basic ideas of an application. It was not his
goal to present the most sophisticated generalization. The author expects further
applications of local cohomology in the forthcoming textbook [6].

The present contribution has grown out of the author’s series of lectures held
at the Summer School on Commutative Algebra at CRM in Ballaterra, July 16 -
26, 1996. The author thanks the organizers of the Summer School at Centre de
Recerca Matemàtica for bringing together all of the participants at this exciting
meeting. For the author it was a great pleasure to present a series of lectures in
the nice and stimulating atmosphere of this Summer School. During the meeting
there were a lot of opportunities for discussions with sevaral people; this made this
School so exciting for the author. Among them the author wants to thank Luchezar
Avramov, Hans-Bjørn Foxby, José-Maria Giral, Craig Huneke, David A. Jorgensen,
Ruth Kantorovitz, Leif Melkersson, Claudia Miller, who drew the author’s attention
to several improvements of his original text. The author wants to thank also the
staff members of the Centre de Recerca Matemàtica for their effort to make the
stay in Ballaterra so pleasant. Finally he wants to thank R. Y. Sharp for a careful
reading of the manuscript and several suggestions for an improvement of the text.

1. A Guide to Duality

1.1. Local Duality. Let A denote a commutative Noetherian ring. Let C denote a
complex of A-modules. For an integer k ∈ Z let C[k] denote the complex C shifted
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k places to the left and the sign of differentials changed to (−1)k, i.e.

(C[k])n = Ck+n and dC[k] = (−1)kdC .

Moreover note that Hn(C[k]) = Hn+k(C).
For a homomorphism f : C → D of two complexes of A-modules let us consider

the mapping cone M(f). This is the complex C ⊕ D[−1] with the boundary map
dM(f) given by the following matrix(

dC 0
−f −dD

)
where dC resp. dD denote the boundary maps of C and D resp. Note that
(M(f), dM(f)) forms indeed a complex.

There is a natural short exact sequence of complexes

0→ D[−1]
i→M(f)

p→ C → 0,

where i(b) = (0,−b) and p(a, b) = a. Clearly these homomorphisms make i and p
into homomorphisms of complexes. Because Hn+1(D[−1]) = Hn(D) the connecting
homomorphism δ provides a map δ· : H ·(C) → H ·(D). By an obvious observation
it follows that δ· = H ·(f). Note that f : C → D induces an isomorphism on
cohomology if and only if M(f) is an exact complex.

Let M, N be two A-modules considered as complexes concentrated in homological
degree zero. Let f : M → N be a homomorphism. Then the mapping cone of f is

M(f) : . . .→ 0→M
−f→ N → 0→ . . .

with the cohomology modules given by

Hn(M(f)) '

 ker f i = 0,
coker f i = 1,

0 otherwise.

This basic observation yields the following result:

Lemma 1.1. Let f : C → D be a homomorphism of complexes. Then there is a
short exact sequence

0→ H1(M(Hn−1(f)))→ Hn(M(f))→ H0(M(Hn(f)))→ 0

for all n ∈ Z.

Proof. This is an immediate consequence of the long exact cohomology sequence.
Recall that the connecting homomorphism is H ·(f). �
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For a complex C and x ∈ A let C
x→ C denote the multiplication map induced by

x, i.e. the map on Cn is given by multiplication with x. Furthermore let C → C⊗AAx

denote the natural map induced by the localization, i.e. the map on Cn is given

by Cn i−→ Cn ⊗A Ax, where for an A-module M the map i is the natural map
i : M →M ⊗A Ax.

In the following let us use the previous consideration in order to construct the
Koszul and Čech complexes with respect to a system of elements x = x1, . . . , xr of
A. To this end we consider the ring A as a complex concentrated in degree zero.
Then define

K ·(x; A) = M(A
x→ A) and K ·

x(A) = M(A→ Ax).

Note that both of these complexes are bounded in degree 0 and 1. Inductively put

K ·(x; A) = M(K ·(y; A)
x→ K ·(y; A)) and

K ·
x(A) = M(K ·

y(A)→ K ·
y(A)⊗A Ax),

where y = x1, . . . , xr−1 and x = xr. For an A-module M finally define

K ·(x; M) = K ·(x; A)⊗A M and K ·
x(M) = K ·

x(A)⊗A M.

Call them (co-) Koszul complex resp. Čech complex of x with respect to M. Obvi-
ously the Čech complex is bounded. It has the following structure

0→M → ⊕iMxi
→ ⊕i<jMxixj

→ . . .→Mx1···xr → 0

with the corresponding boundary maps.
It is well known that there is an isomorphism of complexes

K ·
x(M) ' lim−→K ·(x(n); M),

where x(n) = xn
1 , . . . , x

n
r , see [14]. The direct maps in the direct system are induced

in a natural way by the inductive construction of the complex. The proof follows
by induction on the number of elements.

The importance of the Čech complex is its close relation to the local cohomology.
For an ideal a of A let Γa denote the section functor with respect to a. That is, Γa

is the subfunctor of the identity functor given by

Γa(M) = {m ∈M | Supp Am ⊆ V (a)}.
The right derived functors of Γa are denoted by H i

a, i ∈ N. They are called the local
cohomology functors with respect to a.

Lemma 1.2. Let a resp. S be an ideal resp. a multiplicatively closed set of A. Let
E denote an injective A-module. Then

a) Γa(E) is an injective A-module,
b) the natural map E → ES, e 7→ e

1
, is surjective, and
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c) the localization ES is an injective A-module.

Proof. The first statement is an easy consequence of Matlis’ Structure Theorem
about injective modules. In order to prove b) let e

s
∈ ES be an arbitrary element.

In the case s is A-regular it follows easily that there is an f ∈ E such that e = fs
and f

1
= e

s
, which proves the claim. In the general case choose n ∈ N such that

0 :A sn = 0 :A sn+1. Recall that A is a Noetherian ring. Then consider the injective
(A/0 :A sn)-module HomA(A/0 :A sn, E). Moreover

HomA(A/0 :A sn, E) ' E/0 :E sn

because A/0 :A sn ' snA. Therefore it turns out that E/0 :E sn has the structure
of an injective A/0 :A sn-module. But now s acts on A/0 :A sn as a regular element.
Therefore for e+0 :E sn there exists an f +0 :E sn, f ∈ E, such that e−fs ∈ 0 :E sn.
But this proves e

s
= f

1
, i.e. the surjectivity of the considered map.

By Matlis’ Structure Theorem and because the localization commutes with direct
sums it is enough to prove statement c) for E = EA(A/p), the injective hull of
A/p, p ∈ Spec A. In the case S ∩ p 6= ∅ it follows that ES = 0. So let S ∩ p = ∅.
Then any s ∈ S acts regularly on E. Therefore the map in b) is an isomorphism. �

For simplicity put Hn
x (M) = Hn(Kx(M)). This could give a misunderstanding to

Hn
a (M). But in fact both are isomorphic as shown in the sequel.

Theorem 1.3. Let x = x1, . . . , xr denote a system of elements of A with a = xA.
Then there are functorial isomorphisms Hn

x (M) ' Hn
a (M) for any A-module M and

any n ∈ Z.

Proof. First note that H0
x(M) ' Γa(M) as is easily seen by the structure of K ·

x(M).
Furthermore let 0→M ′ →M →M ′′ → 0 be a short exact sequence of A-modules.
Because K ·

x(A) consists of flat A-modules the induced sequence of complexes

0→ K ·
x(M

′)→ K ·
x(M)→ K ·

x(M
′′)→ 0

is exact. That is, Hn
x (·) forms a connected sequence of functors. Therefore, in

order to prove the claim it will be enough to prove that Hn
x (E) = 0 for n > 0 and

an injective A-module E. This will be proved by induction on r. For r = 1 it is a
particular case of 1.2. Let r > 1. Put y = x1, . . . , xr−1 and x = xr. Then 1.1 provides
a short exact sequence

0→ H1
x(Hn−1

y (E))→ Hn
x (E)→ H0

x(Hn
y (E))→ 0.

For the case n > 2 the claim follows by the induction hypothesis. In the remaining
case n = 1 note that H0

y (E) = ΓyA(E) is an injective A-module, see 1.2. So the

induction hypothesis applies again. �
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Together with 1.1 the previous result provides a short exact sequence describing
the behaviour of local cohomology under enlarging the number of generators of an
ideal.

Corollary 1.4. Let a resp. x denote an ideal resp. an element of A. Then for n ∈ N
there is a functorial short exact sequence

0→ H1
xA(Hn−1

a (M))→ Hn
(a,xA)(M)→ H0

xA(Hn
a (M))→ 0

for any A-module M.

The previous theorem provides a structural result about local cohomology functors
with support in m in the case of a local ring (A, m). To this end let E = EA(A/m)
denote the injective hull of the residue field. Furthermore it provides also a change
of ring theorem.

Corollary 1.5. a) Let (A, m) denote a local ring. Then Hn
m(M), n ∈ N, is an

Artinian A-module for any finitely generated A-module M.
b) Let A → B denote a homomorphism of Noetherian rings. Let a be an ideal of
A. For a B-module M there are A-isomorphisms Hn

a (M) ' Hn
aB(M) for all n ∈ N.

Here in the first local cohomology module M is considered as an A-module.

Proof. a) Let E·(M) denote the minimal injective resolution of M. Then by Matlis’
Structure Theorem on injective A-modules it follows that Γm(E·(M)) is a complex
consisting of finitely many copies of E in each homological degree. Therefore Hn

m(M)
is – as a subquotient of an Artinian A-module – an Artinian module.
b) Let x = x1, . . . , xr denote a generating set of a. Let y = y1, . . . , yr denote the
images in B. Then there is the following isomorphism K ·

x(M) ' K ·
y(B)⊗B M, where

both sides are considered as complexes of A-modules. This proves the claim. �

In the following let T (·) = HomA(·, E) denote the Matlis duality functor for a
local ring (A, m). An exceptional rôle is played by the complex D·

x = T (K ·
x) with

K ·
x = K ·

x(A) as follows by the following theorem. In some sense it extends the
Matlis duality.

For two complexes C, D consider the single complex HomA(C, D) associated to
the corresponding double complex. To be more precise let

HomA(C, D)n =
∏
i∈Z

HomA(Ci, Di+n).

The n-th boundary map restricted to HomA(Ci, Di+n) is given by

HomA(di−1
C , Di+n) + (−1)n+1 HomA(Ci, di+n

D ).
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Note that this induces a boundary map on HomA(C, D). Moreover, it is easy to see
that H0(HomA(C, D)) is isomorphic to the homotopy equivalence classes of homo-
morphisms of the complexes C and D.

Theorem 1.6. There is a functorial map

M ⊗A Â→ HomA(HomA(M, D·
x), D

·
x),

which induces an isomorphism in cohomology for any finitely generated A-module
M.

Proof. Let M be an arbitrary A-module. First note that for two A-modules X and
Y there is a functorial map

M ⊗A HomA(X, Y ) → HomA(HomA(M, X), Y ),
m⊗ f 7→ (m⊗ f)(g) = f(g(m))

for m ∈ M, f ∈ HomA(X, Y ) and g ∈ HomA(M, X). It induces an isomorphism for
a finitely generated A-module M provided Y is an injective A-module. Because D·

x

is a bounded complex of injective A-modules it induces a functorial isomorphism of
complexes

M ⊗A HomA(D·
x, D

·
x)

∼−→ HomA(HomA(M, D·
x), D

·
x)

for any finitely generated A-module M.
Now consider the complex HomA(D·

x, D
·
x). It is isomorphic to T (K ·

x ⊗A T (K ·
x)).

Continue with the investigation of the natural map

f : K ·
x ⊗A T (K ·

x)→ E

defined in homological degree zero. In the following we abbreviate

C := K ·
x ⊗A T (K ·

x).

We claim that f induces an isomorphism in cohomology. To this end consider the
spectral sequence

Eij
1 = H i(K ·

x ⊗A T (K−j
x ))⇒ Ei+j = H i+j(C).

Because T (K−j
x ) is an injective A-module it follows that

Eij
1 = H i

a(T (K−j
x )) = 0

for all i 6= 0 as shown in 1.3. Here a denotes the ideal generated by x. Let i = 0.
Then we have E0j

1 = Γa(T (K−j
x )). This implies that

E0j
1 = lim−→HomA(A/an ⊗K−j

x , E).

Therefore E0j
1 = 0 for j 6= 0 because of (A/an) ⊗A Ax = 0 for an element x ∈ a.

Finally
E00

1 = lim−→HomA(A/an, E) = E,
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because E is an Artinian A-module. This proves the claim as is easily seen.
Moreover C is a complex of injective A-modules as follows by view of 1.2. There-

fore the mapping cone M(f) is an exact complex of injective A-modules. Further-
more let g = T (f) denote the natural map

g : Â→ HomA(D·
x, D

·
x).

This induces an isomorphism in cohomology because the mapping cone M(g) =
T (M(f)) is an exact complex. But now HomA(D·

x, D
·
x) is a complex of flat A-

modules. So there is a sequence of functorial maps

M ⊗A Â→M ⊗A HomA(D·
x, D

·
x)

∼−→ HomA(HomA(M, D·
x), D

·
x).

In order to prove the statement it is enough to show that the first map induces an
isomorphism in cohomology. To this end note that the mapping cone M(g) is a
bounded exact complex of flat A-modules. But now M ⊗A M(g) ' M(1M ⊗ g) is
an exact complex. Therefore the map

1M ⊗ g : M ⊗A Â→M ⊗A HomA(D·
x, D

·
x)

induces an isomorphism in cohomology. �

In the case of a complete local ring (A, m) and a system x = x1, . . . , xr of elements
such that m = Rad xA it follows that D·

x is a bounded complex of injective A-
modules with finitely generated cohomology such that the natural map

M → HomA(HomA(M, D·
x), D

·
x)

induces an isomorphism. Such a complex is called a dualizing complex. By virtue
of this observation call D·

x a quasi-dualizing complex with support in V (a), where
a = Rad xA. While the dualizing complex does not exist always, there are no restric-
tions about the existence of quasi-dualizing complexes with support in V (a). The
isomorphisms in 1.6 are a common generalization of the Matlis duality obtained for
r = 0 and the duality for a dualizing complex.

The most important feature of the dualizing complex is the local duality theorem
first proved by A. Grothendieck. As an application of our considerations let us
derive another proof.

Theorem 1.7. (Local Duality) Let (A, m) denote a local ring. Let x = x1, . . . , xr be
a system of elements such that m = Rad xA. Then there are functorial isomorphisms

Hn
m(M) ' HomA(H−n(HomA(M, D·

x)), E), n ∈ Z,

for a finitely generated A-module M.
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Proof. First note that Hn
m(M) ' Hn(K ·

x ⊗A M) by 1.3. Now D·
x is a bounded

complex of injective A-modules. As in the proof of 1.6 there is a functorial map

M ⊗A HomA(D·
x, E)→ HomA(HomA(M, D·

x), E),

which is an isomorphism of complexes for any finitely generated A-module M. Now
consider the functorial map

K ·
x → HomA(D·

x, E) = T 2(K ·
x).

By 1.5 and the Matlis duality it induces an isomorphism in cohomology. Because
K ·

x and HomA(D·
x, E) are complexes of flat A-modules the natural map

M ⊗A K ·
x →M ⊗A HomA(D·

x, E)

induces an isomorphism in cohomology by the same argument as in 1.6. The proof
follows now by putting together both of the maps. �

In this form of local duality the complex D·
x plays the rôle of the dualizing complex.

In the next section there are a few more statements about dualizing complexes.

1.2. Dualizing Complexes and Some Vanishing Theorems. Let (A, m) denote
a local ring. For a non-zero finitely generated A-module M there are the well-
known vanishing results depth M = min{n ∈ Z | Hn

m(M) 6= 0} and dim M =
max{n ∈ Z | Hn

m(M) 6= 0} shown by A. Grothendieck. In the following we recall
two more subtle vanishing results on Hn

m(M). To this end let us first investigate a
few consequences of local duality.

Theorem 1.8. Suppose that the local ring (A, m) is the factor ring of a Gorenstein
ring (B, n) with r = dim B. Then there are functorial isomorphisms

Hn
m(M) ' HomA(Extr−n

B (M, B), E), n ∈ Z,

for any finitely generated A-module M, where E denotes the injective hull of the
residue field.

Proof. By 1.5 one may assume without loss of generality that A itself is a Gorenstein
ring. Let x = x1, . . . , xr denote a system of parameters of A. Under this additional
Gorenstein assumption it follows that K ·

x is a flat resolution of Hr
m(A)[−r] ' E[−r],

where E denotes the injective hull of the residue field. Therefore D·
x is an injective

resolution of Â[r]. By definition it turns out that

H−n(Hom(M, D·
x)) ' Extr−n

A (M, Â)

for all n ∈ Z. Because of T (Extr−n
A (M, Â)) ' T (Extr−n

A (M, A)) this proves the
claim. �
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In the situation of 1.8 introduce a few abbreviations. For n ∈ Z put

Kn
M = Extr−n

B (M, B).

Moreover for n = dim M we often write KM instead of Kdim M
M . The module KM

is called the canonical module of M. In the case of M = A it coincides with the
classical definition of the canonical module of A. By the Matlis duality and by 1.8
the modules Kn

M do not depend – up to isomorphisms – on the presentation of the
Gorenstein ring B. Clearly Kn

M = 0 for all n > dim M and n < 0. Moreover we have
the isomorphism

Kn
M ⊗A Â ' H−n(HomA(M, D·

x)), n ∈ Z,

as follows by view of 1.7. The advantage of Kn
M lies in the fact that it is – in contrast

to H−n(HomA(M, D·
x)) – a finitely generated A-module.

For a finitely generated A-module M say it satisfies Serre’s condition Sk, k ∈ N,
provided

depth Mp ≥ min{k, dim Mp} for all p ∈ Supp M.

Note that M satisfies S1 if and only if it is unmixed. M is a Cohen-Macaulay module
if and only if it satisfies Sk for all k ∈ N.

Lemma 1.9. Let M denote a finitely generated A-module. The finitely generated
A-modules Kn

M satisfy the following properties:

a) (Kn
M)p ' K

n−dim A/p
Mp

for any p ∈ Supp M, i.e. dim Kn
M ≤ n for all n ∈ Z.

b) If dim Mp + dim A/p = dim M for some p ∈ Supp M, then (KM)p ' KMp .
c) Ass KM = {p ∈ Ass M | dim A/p = dim M}, i.e. dim M = dim KM .
d) Suppose that M is equidimensional. Then M satisfies condition Sk if and

only if dim Kn
M ≤ n− k for all 0 ≤ n < dim M.

e) KM satisfies S2.

Proof. Let p ∈ Supp M denote a prime ideal. Then (Kn
M)p ' K

n−dim A/p
Mp

, as is easily
seen by the presentation as an Ext-module. Therefore dim Kn

M ≤ n.
Let E·(B) denote the minimal injective resolution of B as a B-module. Then

(HomB(M, E·(B)))n = 0 for all n < r − dim M and

AssA Hr−dim M(HomB(M, E·(B))) = {p ∈ Ass M | dim A/p = dim M}.
Putting this together the proofs of a), b), and c) follow immediately.

In order to prove d) first note that dim Mp+dim A/p = dim M for all p ∈ Supp M
since M is equidimensional. Suppose there is an integer n with 0 ≤ n < dim M and

p ∈ Supp Kn
M such that dim A/p > n− k ≥ 0. This implies H

n−dim A/p
pAp

(Mp) 6= 0, see
1.8. Therefore

depth Mp ≤ n− dim A/p < dim M − dim A/p = dim Mp and
depth Mp ≤ n− dim A/p < k,
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in contradiction to Sk. Conversely suppose there is a p ∈ Supp M such that
depth Mp < min{k, dim Mp}. Then (Kn

M)p 6= 0 for n = dim A/p + depth Mp and
dim A/p = n − depth Mp > n − k, a contradiction. This finishes the proof of the
statement in d).

In order to prove e) it is enough to show that depth KM ≥ min{2, dim KM}. Note
that (KM)p ' KMp for all p ∈ Supp KM . This follows because KM is unmixed by
c) and because Supp KM is catenerian, i. e. dim Mp + dim A/p = dim M for all
p ∈ Supp KM .

Without loss of generality we may assume that there is an M -regular element
x ∈ m. Then the short exact sequence 0 → M

x→ M → M/xM → 0 induces an
injection 0→ KM/xKM → KM/xM , which proves the claim. �

Another reading of a) in 1.9 is that H
i+dim A/p
m (M) 6= 0 provided H i

pAp
(Mp) 6= 0.

This is true for an arbitrary local ring as shown by R. Y. Sharp, see [46, Theorem
(4.8)].

Proposition 1.10. Let p be a t-dimensional prime ideal in a local ring (A, m). Let
M denote a finitely generated A-module such that H i

pAp
(Mp) 6= 0 for a certain i ∈ N.

Then H i+t
m (M) 6= 0.

Proof. Choose P ∈ V (pÂ) a prime ideal such that dim Â/P = dim Â/pÂ = t. In

particular this implies P ∩A = p and that pÂP is a PÂP -primary ideal. These data

induce a faithful flat ring homomorphism Ap → ÂP . It yields that

0 6= H i
pAp

(Mp)⊗Ap ÂP ' H i
p bAP

(Mp ⊗Ap ÂP ).

But now there is the following canonical isomorphism Mp ⊗Ap ÂP ' (M ⊗A Â)P .

Because pÂP is a PÂP -primary ideal it follows that 0 6= H i
P bAP

((M ⊗A Â)P ). By

Cohen’s Structure Theorem Â is a homomorphic image of a Gorenstein ring. By

the faithful flatness of A → Â and by the corresponding result for a homomorphic
image of a Gorenstein ring, see 1.9, it turns out that

H i+t
m (M)⊗ Â ' H i+t

m bA(M ⊗A Â) 6= 0,

which finally proves the claim. �

Note that the previous result has the following consequence. Let p ∈ Supp M
denote a prime ideal. Then

depth M ≤ dim A/p + depth Mp

for a finitely generated A-module M. This follows by the non-vanishing of the local
cohomology for the depth of a module.
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As above let (A, m) denote a local ring which is the factor ring of a Gorenstein ring
(B, n). Let E·(B) denote the minimal injective resolution of the Gorenstein ring B as
a B-module. The complex DA = HomB(A, E·(B)) is a bounded complex of injective
A-modules and finitely generated cohomology modules Hn(DA) ' Extn

B(A, B).

Theorem 1.11. The complex DA is a dualizing complex of A. That is, there is a
functorial map

M → HomA(HomA(M, DA), DA)

that induces an isomorphism in cohomology for any finitely generated A-module M.

Proof. Because DA is a bounded complex of injective A-modules there is an isomor-
phism of complexes

M ⊗A HomA(DA, DA)
∼−→ HomA(HomA(M, DA), DA)

for any finitely generated A-module M as shown above. By similar arguments as
before there is a natural map A→ HomA(DA, DA). Because both of the complexes
involved – A as well as HomA(DA, DA) – are complexes of flat A-modules it will be
enough to show that this map induces an isomorphism in cohomology in order to
prove the statement.

Next consider the isomorphism of complexes

HomA(DA, DA)
∼−→ HomB(HomB(A, E·(B)), E·(B)).

Therefore, in order to show the claim it will be enough to prove the statement for
the Gorenstein ring B. First it will be shown that the natural map

jB : B → HomB(E·(B), E·(B))

induces an isomorphism in cohomology. To this end consider the natural map iB :
B → E·(B). It induces an isomorphism of complexes. That is, the mapping cone
M(iB) is exact. Therefore

HomB(M(iB), E·(B)) = M(HomB(iB, E·(B)))

is also an exact complex. Hence

HomB(iB, E·(B)) : HomB(E·(B), E·(B))→ E·(B)

induces an isomorphism in cohomology. Now it is easy to check that the composition
of the homomorphisms

B → HomB(E·(B), E·(B))→ E·(B)

is just iB. Therefore jB induces an isomorphism in cohomology. Moreover

HomB(E·(B), E·(B))
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is a complex of flat B-modules. Therefore the natural map jB induces a homomor-
phism of complexes M ⊗B B → M ⊗ HomB(E·(B), E·(B)) which induces – by the
same argument as above – an isomorphism in cohomology. �

By his recent result on Macaulayfications, see [25], T. Kawasaki proved the con-
verse of 1.11, namely, that A is the quotient of a Gorenstein ring provided A posseses
a dualizing complex.

In the following there is a characterization when a certain complex is a dualiz-
ing complex. To this end recall the following induction procedure well-suited to
homological arguments.

Proposition 1.12. Let P denote a property of finitely generated A-modules, where
(A, m, k) denotes a local ring with residue field k. Suppose that P satisfies the fol-
lowing properties:

a) The residue field k has P.
b) If 0 → M ′ → M → M ′′ → 0 denotes a short exact sequence of finitely

generated A-modules such that M ′ and M ′′ have P, then so does M.
c) If x is an M-regular element such that M/xM has P, then so does M.

Then any finitely generated A-module M has P.

The proof is easy. For the details see L. L. Avramov’s notes [3, Proposition 0.0.9]
in this volume. In the following we will use this arguments in order to sketch the
characterization of dualizing complexes.

Theorem 1.13. Let D denote a bounded complex of injective A-modules. Assume
that D has finitely generated cohomology modules. Then D is a dualizing complex if
and only if

Hn(HomA(k,D)) '
{

0 for n 6= t
k for n = t

for a certain integer t ∈ Z.

Proof. Suppose that D is a dualizing complex. Then – by definition – the natural
homomorphism

k → HomA(HomA(k,D), D))

induces an isomorphism in cohomology. Furthermore HomA(k,D) is a complex
consisting of k-vector spaces and whose cohomology modules are finite dimensional
k-vector spaces. For i ∈ Z let H i = H i(HomA(k,D)) and hi = dimk Hi. Then it

is easy to see that that there is an isomorphism of complexes H · ∼→ HomA(k,D),
where H · denotes the complex consisting of H i and the zero homomorphisms as
boundary maps. Then for n ∈ Z it follows that

dimk Hn(HomA(HomA(k,D), D)) =
∑
i∈Z

hihi+n.
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As easily seen this implies the existence of an integer t ∈ Z such that ht = 1 and
hi = 0 for any i 6= t.

In order to prove the converse one has to show that the natural homomorphism

M → HomA(HomA(M, D), D)

induces an isomorphism in cohomology for any finitely generated A-module M. To
this end we proceed by 1.12. By the assumption it follows immediately that a)
is true. In order to prove b) recall that HomA(HomA(·, D), D) transforms short
exact sequences into short exact sequences of complexes. This holds because D is a
bounded complex of injective A-modules. Finally c) is true because the cohomology
modules of HomA(HomA(M, D), D) are finitely generated A-modules. Then one
might apply Nakayama’s Lemma. �

In the case the integer t in 1.13 is equal to zero call D a normalized dualizing
complex.

It is noteworthy to say that 1.12 does not apply for the proof of 1.6. In general it
will be not true that the complex Hom(M, D·

x) has finitely generated cohomology.
So the Nakayama Lemma does not apply in proving condition c) in 1.12.

Under the previous assumptions on A and B with r = dim B let D(M) denote the
complex HomA(M, DA), where M denotes a finitely generated A-module M. Then

there is an isomorphism D(M)
∼−→ HomB(M, E·(M)). Therefore

Hn(D(M)) ' Extn
B(M, B) for all n ∈ Z.

This implies Hr−d(D(M)) ' KM and Hr−n(D(M)) ' Kn
M for all n 6= d = dim M.

Because of D(M)n = 0 for all n < r − d there is a natural homomorphism of
complexes

iM : KM [d− r]→ D(M),

where KM is considered as a complex concentrated in homological degree zero. So
the mapping cone M(iM) provides a short exact sequence of complexes

0→ D(M)[−1]→M(iM)→ KM [d− r]→ 0.

Therefore we see that Hr−n+1(M(iM)) ' Kn
M for all 0 ≤ n < dim M and

Hr−n+1(M(iM)) = 0 for all n < 0 and all n ≥ dim M. By applying the functor
D(·) := HomA(·, DA) it induces a short exact sequence of complexes

0→ D(KM)[r − d]→ D(M(iM))→ D2(M)[1]→ 0.

Recall that DA is a complex consisting of injective A-modules. By 1.11 and the
definition of KKM

this yields an exact sequence

0→ H−1(D(M(iM)))→M
τM→ KKM

→ H0(D(M(iM)))→ 0

and isomorphisms Hn(D(M(iM))) ' Kd−n
KM

for all n ≥ 1.
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Note that in the particular case of M = A the homomorphism τA coincides with
the natural map

A→ HomA(KA, KA), a 7→ fa,

of the ring into the endomorphism ring of its canonical module. Here fa denotes the
multiplication map by a.

Theorem 1.14. Let M denote a finitely generated, equidimensional A-module with
d = dim M, where A is a factor ring of a Gorenstein ring. Then for an integer
k ≥ 1 the following statements are equivalent:

(i) M satisfies condition Sk.
(ii) The natural map τM : M → KKM

is bijective (resp. injective for k = 1) and
Hn

m(KM) = 0 for all d− k + 2 ≤ n < d.

Proof. First recall that Hn(D(M(iM))) ' Kd−n
KM

for all n ≥ 1. By the local duality it
follows that T (Kn

KM
) ' Hn

m(KM) for all n ∈ Z. By virtue of the short exact sequence
and the above isomorphisms the statement in (ii) is equivalent to

(iii) Hn(D(M(iM))) = 0 for all − 1 ≤ n < k − 1.

Next show that (i) ⇒ (iii). First recall that D(M(iM))
∼→ HomB(M(iM), E·(B)).

Then there is the following spectral sequence

Ei,j
2 = Exti

B(H−j(M(iM)), B)⇒ En = Hn(D(M(iM)))

in order to compute Hn(D(M(iM))). Moreover it follows that

H−j(M(iM)) '
{

Kr+j+1
M for 0 ≤ r + j + 1 < dim M and

0 otherwise.

By the assumptions and 1.9 it implies dim Kr+j+1
M ≤ r + j +1−k for all j ∈ Z. As a

consequence of 1.8 it turns out that Ei,j
2 = 0 for all i, j ∈ Z satisfying i + j < k− 1.

That is the spectral sequence proves the condition (iii).
In order to prove the reverse conclusion first note that dim Mp+dim A/p = dim M

for all prime ideals p ∈ Supp M since M is equi-dimensional. Then by 1.9 it follows
easily

D(M(iM))⊗A Ap
∼−→ D(M(iMp)).

This means that the claim is a local question. So by induction we have to show that
depth M ≥ k. By induction hypothesis we know that dim Kj

M ≤ j − k for all j > k

and dim Kj
M ≤ 0 for all 0 ≤ j ≤ k. Then the above spectral sequences degenerates

partially to the isomorphisms Extr
B(Kj+1

M , B) ' Hj(D(M(iM))) for all j < k − 1.
Recall that Extr

B(N, B) is the onliest possible non-vanishing Ext module for N a
B-module of finite length. By the local duality this implies Hj+1

m (M) = 0 for all
j < k − 1 and depthA M ≥ k, as required. �
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It turns out that for a module M satisfying S2 the natural map τM : M → KKM

is an isomorphism. In the case of the canonical module KA this means that the
endomorphism ring of KA is isomorphic to A if and only if A satisfies S2. The
previous result has a dual statement which characterizes the vanishing of the local
cohomology modules below the dimension of the module.

Corollary 1.15. With the notation of 1.14 suppose that the A-module M satisfies
the condition S2. For an integer k ≥ 2 the following conditions are equivalent:

(i) KM satifies condition Sk.
(ii) Hn

m(M) = 0 for all d− k + 2 ≤ n < d.

Proof. This is just a consequence of 1.14 and the remark that τM : M → KKM
is an

isomorphism. �

There are several further applications of these vanishing results in the case A is
a quasi-Gorenstein ring or in liaison. For the details compare [41]. We conclude
with one of them, a Cohen-Macaulay characterization for a quasi-Gorenstein ring.
To this end let us call a local ring (A, m) that is a quotient of a Gorenstein ring
B a quasi-Gorentein ring, provided KA ' A. Note that a Cohen-Macaulay quasi-
Gorenstein ring is a Gorenstein ring. A local factorial ring that is a quotient of a
Gorenstein ring is a quasi-Gorenstein ring, see [32].

Theorem 1.16. Let (A, m) denote a quasi-Gorenstein ring such that

depth Ap ≥ min{dim A,
1

2
dim Ap + 1} for all p ∈ Spec A.

Then A is a Gorenstein ring.

Proof. Let d = dim A. It is enough to show that A is a Cohen-Macaulay ring. This
is true for d ≤ 3 by the assumption. By induction Ap is a Cohen-Macaulay ring for
all prime ideals p 6= m. Therefore by the assumption the local ring (A, m) satisfies
the condition Sk for k ≥ 1

2
dim A + 1. Because of KA ' A the result 1.15 implies

that Hn
m(A) = 0 for all n < dim A, which proves the Cohen-Macaulayness of A. �

The previous result says something about the difficulty to construct non-Cohen-
Macaulay factorial domains. If such a ring is ‘half way’ Cohen-Macaulay it is a
Cohen-Macaulay ring. Originally this result was proved by R. Hartshorne and
A. Ogus, see [17].

1.3. Cohomological Annihilators. Vanishing results on local cohomology mo-
dules provide strong information. More subtle information comes from consideration
of their annihilators. This will be sampled in this subsection.
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To this end we have to use a certain generalization of the notion of a regular
sequence. First let us summarize basic facts about filter regular sequences. Let M
denote a finitely generated A-module over (A, m), a local Noetherian ring.

A system of elements x = x1, . . . , xr ⊆ m is called a filter regular sequence of M
(or M -filter regular sequence), if

xi /∈ p for all p ∈ (Ass M/(x1, . . . , xi−1)M) \ {m}

for all i = 1, . . . , r. This is equivalent to saying that the A-modules

(x1, . . . , xi−1)M : xi/(x1, . . . , xi−1)M, i = 1, . . . , r,

are of finite length. Moreover x is an M -filter regular sequence if and only if
{x1

1
, . . . , xi

1
} ∈ Ap is an Mp-regular sequence for all p ∈ (V (x1, . . . , xi)∩Supp M)\{m}

and i = 1, . . . , r.

Lemma 1.17. Let M denote a finitely generated A-module. Suppose that x =
x1, . . . , xr denotes an M-filter regular sequence.

a) H i(x; M) is an A-module of finite length for all i < r.
b) Hi(x; M) is an A-module of finite length for all i > 0.
c) Supp H i

c(M) ⊆ V (m) for all 0 ≤ i < r, where c = (x1, . . . , xr)A.

Proof. Because of the self duality of the Koszul complexes it will be enough to prove
one of the first two statements. Now note that

Supp H i(x; M) ⊆ V (x) ∩ Supp M, i ∈ Z.

On the other hand x is an M -regular sequence if and only if H i(x; M) = 0 for all
i < r. Then the result a) follows by a localization argument of the Koszul complexes.
In order to prove c) note that Supp H i

c(M) ⊆ V (x)∩Supp M. Let p be a non-maximal
prime ideal in V (x) ∩ Supp M. By a localization argument it follows that

H i
c(M)⊗A Ap ' H i

cAp
(Mp) = 0 for i < r,

since {x1

1
, . . . , xr

1
} is an Mp-regular sequence. �

Let M denote a finitely generated A-module. Let a denote an ideal of (A, m). The
vanishing resp. non-vanishing of the local cohomology modules Hn

a (M) provides
useful local information on M. For a more subtle consideration the annihilators of
Hn

a (M) are of some interest. For a finitely generated A-module M let

an(M) := AnnA Hn
a (M), n ∈ Z,

denote the n-th cohomological annihilator of M with respect to a.
Now we relate the cohomological annihilators of M to those of M modulo a bunch

of generic hyperplane sections.
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Theorem 1.18. Let x = x1, . . . , xr denote an M-filter regular sequence. Then

an(M) · . . . · an+r(M) ⊆ an(M/xM)

for all integers n.

Proof. Let K · := K ·
y denote the Čech complex of A with respect to a system of

generators y = y1, . . . , ys of the ideal a. Let K ·(x; A)⊗AM be the Koszul co-complex
of M with respect to x. Put

C · := (K · ⊗A M)⊗A K ·(x; A) ' K · ⊗A K ·(x; M).

There are two spectral sequences for computing the cohomology of C ·. First consider

Eij
2 = H i(K · ⊗A Hj(x; M))⇒ Ei+j = H i+j(C ·).

Note that H i(K · ⊗A N) ' H i
a(N), i ∈ Z, for a finitely generated A-module N, see

1.3. Therefore
Eij

2 ' H i
a(H

j(x; M)) for all i, j ∈ Z.

By 1.17 the A-modules H i(x; M), i < r, are of finite length. So there are the
following isomorphisms

Eij
2 '

 0 for i 6= 0 and j 6= r,
Hj(x; M) for i = 0 and j 6= r,

H i
a(M/xM) for j = r.

To this end recall that Hr(x; M) ' M/xM . By virtue of the spectral sequence it
turns out that

Eij
∞ = 0 for all i 6= 0, j 6= r.

Because of the subsequent stages of the spectral sequence

Ei−k,r+k−1
k → Eir

k → Ei+k,r−k+1
k

and Ei−k,r+k−1
k = Ei+k,r−k+1

k = 0 for all k ≥ 2 it yields that Eir
∞ ' H i

a(M/xM). By a
similar consideration we obtain that E0j

∞ ' Hj(x; M) for all j 6= r. Therefore there
are the following isomorphisms

H i(C ·) '

 H i(x; M) for 0 ≤ i < r,
H i−r

a (M/xM) for r ≤ i ≤ d,
0 otherwise,

where d = dim M. On the other hand there is the spectral sequence
′Eij

2 = Hj(K ·(x; A)⊗A H i
a(M))⇒ ′Ei+j = H i+j(C ·).

Because of ′Eij
2 = Hj(x; H i

a(M)) it follows that ′Eij
2 = 0 for all j < 0 and j > r.

By the construction of the Koszul complex ′Eij
2 is a subquotient of the direct sum

of copies of H i
a(M). Therefore ai(M)(′Eij

2 ) = 0 for all i, j ∈ Z. Whence it implies
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that ai(M)(′Eij
∞) = 0 for all i, j ∈ Z. By view of the filtration of H i+j(C ·) defined

by ′Eij
∞ it follows that

a0(M) · . . . · ai(M)H i(C ·) = 0 for 0 ≤ i < r and
ai−r(M) · . . . · ai(M)H i(C ·) = 0 for r ≤ i ≤ d.

Hence, the above computation of H i(C ·) proves the claim. �

For a filter regular sequence x = x1, . . . , xr the proof of Theorem 3.3 provides
that a0(M) · . . . · ai(M)H i(x1, . . . , xr; M) = 0 for all i < r. Because of the finite
length of H i(x; M) for all i < r this is a particular case of the results shown in [41].
Moreover the notion of M -filter regular sequences provides an interesting expression
of the local cohomology modules of M.

Lemma 1.19. Let x = x1, . . . , xr be an M-filter regular sequence contained in a.
Put c = (x1, . . . , xr)A. Then there are the following isomorphisms

H i
a(M) '

{
H i

c(M) for 0 ≤ i < r,
H i−r

a (Hr
c (M)) for r ≤ i ≤ d,

where d = dimA M .

Proof. Consider the spectral sequence

Eij
2 = H i

a(H
j
c (M))⇒ Ei+j = H i+j

a (M).

By 1.17 we have that Supp Hj
c (M) ⊆ V (m) for all j < r. Whence Eij

2 = 0 for all
i 6= 0 and j 6= r. Furthermore, E0j

2 = Hj
c (M) for j 6= r and Eir

2 = H i
a(H

r
c (M)). An

argument similar to that of the proof given in 1.18 yields that

E0j
∞ ' Hj

c (M) and Eir
∞ ' H i

a(H
r
c (M)).

Because of E0j
∞ = 0 for j > r the spectral sequence proves the claim. �

Let x = x1, . . . , xr be a system of elements of A. For the following results put
x(k) = xk

1, . . . , x
k
r for an integer k ∈ N.

Corollary 1.20. Let x = x1, . . . , xr be an M-filter regular sequence contained in
a. The multiplication by x1 · · ·xr induces a direct system {H i

a(M/x(k)M)}k∈N, such
that

H i+r
a (M) ' lim

−→
H i

a(M/x(k)M)

for all i ≥ 0.

Proof. There is a direct system {M/x(k)M}k∈N with homomorphisms induced by
the multiplication by x1 · · ·xr. By [13] there is an isomorphism

Hr
c (M) ' lim

−→
M/x(k)M.
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Then the claim follows by 1.19 since the local cohomology commutes with direct
limits. �

In order to produce an ‘upper’ approximation of ai(M/xM), x = x1, . . . , xr, an
M -filter regular sequence, a few preliminaries are necessary. For a given i and
j = 0, 1, . . . , r set

aij(x; M) =
⋂

k1,...,kj≥1

ai(M/(xk1
1 , . . . , x

kj

j )M).

Furthermore define ai(x; M) =
⋂r

j=0 aij(x; M). The next result relates the cohomo-

logical annihilators of M to those of M/xM.

Corollary 1.21. Let x = x1, . . . , xr be an M-filter regular sequence contained in a.
Then

ai(M) · . . . · ai+r(M) ⊆ ai(x; M) ⊆ ai(M) ∩ . . . ∩ ai+r(M)

for all 0 ≤ i ≤ d − r. In particular, ai(x; M) and ai(M) ∩ . . . ∩ ai+r(M) have the
same radical.

Proof. By 1.18 it follows that ai(M)·. . .·ai+j(M) ⊆ aij(x; M) for j = 0, 1, . . . , r. Re-

call that xk1
1 , . . . , x

kj

j forms an M -filter regular sequence, provided that x = x1, . . . , xr

is an M -filter regular sequence. Whence the first inclusion is true. Moreover, by
1.20 it yields that

ai(x; M) ⊆ aij(x; M) ⊆ ai+j(M)

for all j = 0, 1, . . . , r. This proves the second containment relation. �

The results of this section generalize those for the cohomological annihilators
mn(M) of Hn

m(M), n ∈ Z, investigated in [41].

2. A Few Applications of Local Cohomology

2.1. On Ideal Topologies. Let S denote a multiplicatively closed set of a Noe-
therian ring A. For an ideal a of A put aS = aAS ∩ A. For an integer n ∈ N let

a
(n)
S = anAS ∩ A denote the n-th symbolic power of a with respect to S. Note that

this generalizes the notion of the n-th symbolic power p(n) = pnAp ∩ A of a prime
ideal p of A. The ideal aS is the so-called S-component of a, i.e.

aS = {r ∈ A | rs ∈ a for some s ∈ S}.
So the primary decomposition of aS consists of the intersection of all primary com-
ponents of a that do not meet S. In other words

AssA A/aS = {p ∈ AssA A/a | p ∩ S = ∅}.
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Moreover it is easily seen that

AssA aS/a = {p ∈ AssA A/a | p ∩ S 6= ∅}.
However SuppA aS/a ⊆ V (b), where b =

∏
p∈Ass(aS/a) p. Whence it turns out that

aS = a :A 〈b〉, where the last colon ideal denotes the stable value of the ascending
chain of ideals

a ⊆ a :A b ⊆ a :A b2 ⊆ . . . .

Obviously a :A 〈b〉 = a :A 〈b′〉 for two ideals b, b′ with the same radical. On the
other hand for two ideals a, b it follows that

a :A 〈b〉 = aS, where S = ∩p∈Ass A/a\V (b)A \ p.

There is a deep interest in comparing the topology defined by {a(n)
S }n∈N with the

a-adic topology. To this end we shall use the following variation of Chevalley’s
theorem, see [35].

Theorem 2.1. Let a denote an ideal of a local ring (A, m). Let {bn}n∈N denote a
descending sequence of ideals. Suppose that the following conditions are satisfied:

a) A is a-adically complete,
b) ∩n∈Nbn = (0), i.e. the filtration is separated, and
c) for all m ∈ N the family of ideals {bn A/am}n∈N satisfies the descending

chain condition.

Then for any m ∈ N there exists an integer n = n(m) such bn ⊂ am.

Proof. The assumption in c) guarantees that for any given m ∈ N there is an integer
n = n(m) such that

bn + am = bn+k + am for all k ≥ 1.

Call the ideal at the stable value cm. Now suppose the conclusion is not true, i.e.
bn 6⊆ am for all n ∈ N and a fixed m ∈ N. Therefore cm 6= am. Moreover it is easily
seen that cm+1 +am = cm. Now construct inductively a series (xm)m∈N satisfying the
following properties

xm ∈ cm \ am and xm+1 ≡ xm mod am.

Therefore (xm)m∈N is a convergent series with a limit 0 6= x ∈ A. This follows since
A is a-adically complete by a). By definition that means for any m ∈ N there exists
an l ∈ N such that x−xn ∈ am for all n ≥ l = l(m). Because of xn ∈ cn this provides
that x ∈ ∩m∈N ∩n∈N (cn + am). By Krull’s Intersection Theorem and assumption b)
it follows x = 0, a contradiction. �

As a first application compare the a-adic topology with the topology derived by
cutting the m-torsion of the powers of a.
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Corollary 2.2. For an ideal a of a local ring (A, m) the following conditions are
equivalent:

(i) {an :A 〈m〉}n∈N is equivalent to the a-adic topology.

(ii) ∩n∈N(anÂ : 〈mÂ〉) = 0, where Â denotes the m-adic completion of A.

(iii) height(aÂ + p/p) < dim Â/p for all p ∈ Ass Â.

Proof. Without loss of generality we may assume that A is a complete local ring.
The conclusion (i) ⇒ (ii) is obviously true by Krull’s Intersection Theorem. Let us
prove (ii) ⇒ (iii). Suppose there is a p ∈ Ass A such that a + p is m-primary. Then

0 6= 0 : 〈p〉 ⊆ ∩n∈N(an : 〈p〉) = ∩n∈N(an : 〈p + a〉) = ∩n∈N(an : 〈m〉),
a contradiction. Finally we prove the implication (iii) ⇒ (i).

First note that because A is complete it is also a-adically complete. Moreover
for a given m ∈ N the sequence {(an : 〈m〉)A/am}n∈N satisfies the descending chain
condition. Note that ((an : 〈m〉) + am)/am is a module of finite length for all large
n ∈ N. Suppose that (i) is not true. By virtue of 2.1 this means that 0 6= ∩n∈N(an :
〈m〉), since the conditions a) and c) are satisfied.

Now choose
p ∈ AssA(∩n∈N(an : 〈m〉))

an associated prime ideal. Then p = 0 :A x for some 0 6= x ∈ ∩n∈N(an : 〈m〉).
Therefore p ∈ Ass A.

By the Artin-Rees Lemma there exists a k ∈ N such that ak ∩ xA ⊆ xa. By the
choice of x there is an integer l ∈ N such that mlx ⊆ ak. Therefore

mlx ⊆ ak ∩ xA ⊆ xa,

which implies ml ⊆ a + p, in contradiction to assumption (iii). �

A remarkle improvement of 2.2 was shown by I. Swanson, see [47]. Under the
equivalent conditions of 2.2 she proved the existence of a k ∈ N such that ank :A
〈m〉 ⊆ an for all n ∈ N.

In the following let us describe the obstruction for the equivalence of both of the
topologies considered in 2.2. To this end let u(a) denote the intersection of those
primary components q of 0 in A such that the associated prime ideal p satisfies
dim A/(a + p) > 0.

Proposition 2.3. Let a denote an ideal of a local ring (A, m). Then it follows that
u(a) = ∩n∈N(an : 〈m〉).

Proof. Let x ∈ ∩n∈N(an : 〈m〉) be an arbitrary element. Then it is esily seen that
x
1
∈ ∩n∈NanAp = 0 for every prime ideal p ∈ V (a) \ {m}. That is x ∈ 0p for every

p ∈ V (a) \ {m}. By taking the intersection over all those prime ideals it follows
x ∈ u(a). But this means ∩n∈N(an : 〈m〉) ⊆ u(a).
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In order to prove the converse containment relation let c =
∏

p, where the product
is taken over all prime ideals p ∈ Ass A such that dim A/(a + p) = 0. Then u(a) =
0 :A 〈c〉 and

0 :A 〈c〉 ⊆ ∩n∈N(an : 〈c〉) = ∩n∈N(an : 〈c + a〉) = ∩n∈N(an : 〈m〉)
because of Rad(c + a) = m, as is easily seen. �

Now consider the case of a principal ideal, important for the applications in the
following.

Corollary 2.4. Let a denote an ideal of a commutative Noetherian ring A. For a
regular element x ∈ a the following conditions are equivalent:

(i) {xnA :A 〈a〉}n∈N is equivalent to the xA-adic topology.

(ii) dim ÂP /p > 1 for all P ∈ Ass A/xA ∩ V (a) and all p ∈ Ass ÂP .

Proof. First prove the implication (i) ⇒ (ii). Suppose that there are prime ideals

P ∈ Ass A/xA ∩ V (a) and p ∈ Ass ÂP such that dim ÂP /p = 1. Because x is an

ÂP -regular element this means that dim ÂP /(xÂP + p) = 0. Note that x
1

is not

a unit in ÂP . Now replace ÂP by A. Then by 2.2 there is an n ∈ N such that
xmA :A 〈m〉 6⊆ xnA for all m ≥ n. Therefore xmA :A 〈a〉 6⊆ xnA for all m ≥ n since
xmA :A 〈m〉 ⊆ xmA :A 〈a〉. This contradicts the assumption in (i).

In order to prove that (ii) ⇒(i) consider the ideals

Em,n = (xmA :A 〈a〉+ xnA)/xnA ⊆ A/xnA

for a given n and all m ≥ n. Obviously AssA Em,n ⊆ AssA A/xA ∩ V (a). Moreover
Em+1,n ⊆ Em,n. That means, for a fixed n ∈ N the set AssA Em,n becomes an
eventually stable set of prime ideals, say Xn. The claim will follow provided Xn =
∅. Suppose that Xn 6= ∅. By a localization argument and changing notation one
might assume that Xn = {m}, the maximal ideal of a local ring (A, m). Therefore
Supp Em,n = V (m) for any fixed n ∈ N and all large m. Whence

xmA :A 〈a〉 ⊆ xnA :A 〈m〉
for a given n and all large m. By assumption (ii) and 2.2 it follows that for a given k
there is an integer n such that xnA :A 〈m〉 ⊆ xkA. Therefore Xn = ∅, a contradiction
to the choice of Xn. �

While condition (ii) looks rather technical one should try to simplify it under
reasonable conditions on A. Say a local ring (A, m) satisfies condition (C) provided

dim A/P = dim Â/p for all P ∈ Ass A and all p ∈ Ass Â/P Â.

This is equivalent to saying that A/P is an unmixed local ring for any prime ideal
P ∈ Ass A.
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Say that a commutative Noetherian A satisfies locally condition (C) provided any
localization Ap, p ∈ Spec A, satisfies condition (C). Let A be an unmixed ring resp.
a factor ring of a Cohen-Macaulay ring. Then it follows that A satisfies locally (C),
see [35]. In particular, by Cohen’s Structure Theorem it turns out that a complete
local ring satisfies locally condition (C).

Proposition 2.5. Let (A, m) denote a local ring satisfying condition (C). Then it
satisfies also locally (C).

Proof. By definition condition (C) implies that, for P ∈ Ass A, A/P is unmixed, i.e.,

dim Â/P = dim Â/pÂ for all p ∈ Ass Â/P Â. Now unmixedness localizes, i.e. for
any Q ∈ V (P ) the local ring AQ/PAQ is again unmixed, see [33]. Therefore AQ

satisfies condition (C) for any Q ∈ Spec A. Recall that a for prime ideal Q ∈ V (P )
we have p ∈ Ass A and p ⊆ Q if and only if pAQ ∈ Ass AQ. �

Now use the results about condition (C) in order to simplify the result in 2.4.

Corollary 2.6. Let A denote a commutative Noetherian ring satisfying locally the
condition (C). Let x ∈ a be a regular element. Then {xnA :A 〈a〉}n∈N is equivalent to
the xA-adic topology if and only if height(a+p/p) > 1 for all p ∈ Ass A. In particular,

in the case of a local ring (A, m) this holds if and only if height(aÂ + p/p) > 1 for

all p ∈ Ass Â.

Proof. Let height(a + p/p) > 1 for all primes p ∈ Ass A. Then dim AP /p > 1 for all
prime ideals P ∈ Ass A/xA ∩ V (a) and p ∈ Ass AP . Because of condition (C) for

AP it implies that dim ÂP /q > 1 for all q ∈ Ass ÂP /pÂP . But now

Ass ÂP = ∪p∈Ass AP
Ass ÂP /pÂP ,

see [28, Theorem 23.2], which proves the first part of the result in view of 2.4.
Conversely suppose the equivalence of the ideal topologies and let height(a +

p/p) = 1 for some p ∈ Ass A. Then there is a prime ideal P ∈ V (a) such that
dim AP /pAP = 1. Because x

1
is an AP -regular element it follows that P ∈ Ass A/xA∩

V (a). So condition (C) provides a contradiction by 2.4. �

2.2. On Ideal Transforms. In this subsection let us discuss the behaviour of cer-
tain intermediate rings lying between a commutative Noetherian ring and its full
ring of quotients. To this end let x ∈ A be a non-zero divisor and A ⊆ B ⊆ Ax an
intermediate ring.

Lemma 2.7. For an intermediate ring A ⊆ B ⊆ Ax the following conditions are
equivalent:

(i) B is a finitely generated A-module.
(ii) There is a k ∈ N such that xkB ⊆ A.
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(iii) There is a k ∈ N such that xk+1B ∩ A ⊆ xA.
(iv) {xnB ∩ A}n∈N is equivalent to the xA-adic topology.
(v) There is a k ∈ N such that xn+kB ∩ A = xn(xkB ∩ A) for all n ≥ 1.

Proof. The implication (i) ⇒ (v) is a consequence of the Artin-Rees lemma. The
implications (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) are easy to see. Finally we have (ii) ⇒
(i) since B is as an A-submodule of the finitely generated A-module 1

xk A finitely
generated. �

In the following there is some need for the ideal transform. To this end let a
denote a regular ideal of a commutative Noetherian ring A. Define

Ta(A) = {q ∈ Q(A) | Supp(Aq + A/A) ⊆ V (a)},

where Q(A) denotes the full ring of quotients of A. It follows that

Ta(A) = {q ∈ Q(A) | anq ⊆ A for some n ∈ N},

Note that A ⊆ Ta(A) ⊆ Ax, where x ∈ a is a non-zero divisor. Moreover, sup-
pose that a = (a1, . . . , as)A, where each of the ai’s is a non-zero divisor. Then
Ta(A) = ∩s

i=1Aai
as is easily seen. Moreover one might define Ta(B) for an arbitrary

intermediate ring A ⊆ B ⊆ Q(A) in a corresponding way.
Ideal transforms were first studied by M. Nagata in connection with Hilbert’s

14th problem, see [34]. It is of some interest to describe when Ta(A) is an A-algebra
of finite type. As a first step towards this direction consider when it is a finitely
generated A-module.

Lemma 2.8. Let a denote a regular ideal of a commutative ring A. Let x ∈ a be a
non-zero divisor. Then the following conditions are satisfied:

a) Ta(Ta(A)) = Ta(A),
b) AssA Ta(A)/A = Ass A/xA ∩ V (a), and
c) rTa(A) ∩ A = rA : 〈a〉 for any regular element r ∈ A.

Proof. The first claim is obvious by definition. In order to prove b) let p = A : q for
some q = s

xn ∈ Ta(A) \ A. Then p = xnA :A s and s 6∈ xnA. That is p ∈ Ass A/xA.

Furthermore a ⊆ p since akq ⊆ A and ak ⊆ A : q = p, for some k ∈ N. The reverse
conclusion follows by similar arguments.

In order to prove c) first note that rTa(A)∩A ⊆ rA :A 〈a〉 as easily seen. For the
reverse inclusion note that rTa(A) : 〈a〉 = rTa(A). �

As a consequence of 2.8 it follows that AssA Ta(A)/A = Ass Ext1
A(A/a, A). There-

fore Ta(A) = A if and only if grade a > 1. There is a relation of ideal transforms to a
more functorial construction. First note that HomA(a, A) ' A :Q(A) a for a regular
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ideal a in A. Therefore lim−→HomA(an, A) ' ∪n∈N(A :Q(A) an) = Ta(A). This yields a
short exact sequence

0→ A→ Ta(A)→ H1
a (A)→ 0,

where the monomorphism is just the inclusion map. Therefore Ta(A)/A ' H1
a (A).

So the ideal transform enables another approach to H1
a (A).

It is of a particular interest when Ta(A) or - equivalently H1
a (A) - is a finitely

generated A-module. In the following there is a generalization of A. Grothendieck’s
finiteness result, see [13].

Theorem 2.9. (Grothendieck’s Finiteness Result) Let a denote a regular ideal of a
commutative Noetherian ring A. Then the following conditions are equivalent:

(i) Ta(A) is a finitely generated A-module.

(ii) dim ÂP /p > 1 for all P ∈ AssA Ext1
A(A/a, A) and all p ∈ Ass ÂP .

Proof. By 2.7 and 2.8 the statement in condition (i) is equivalent to the fact that
{xnA :A 〈a〉}n∈N is equivalent to the xA-adic topology for a non-zero divisor x ∈ a.
Note that Ta(A) ⊆ Ax. By 2.4 this proves the statement because of

Ass A/xA ∩ V (a) = Ass Ext1
A(A/a, A)

as mentioned above. �

Under the additional assumption of condition (C) on A there is a further simpli-
fication of the finiteness result.

Corollary 2.10. a) Suppose that A is a factor ring of a Cohen-Macaulay ring.
Then Ta(A) is a finitely generated A-module if and only if height(a + p/p) > 1 for
all p ∈ Ass A. In particular Ta(A) is a finitely generated A-module if and only if
Ta+p/p(A/p) is a finitely generated A/p-module for all p ∈ Ass A.
b) Suppose that (A, m) is a local ring. Then Ta(A) is a finitely generated A-module

if and only if height(aÂ + p/p) > 1 for all p ∈ Ass Â.

Proof. It is a consequence of 2.9 with the aid of 2.6. �

In the case of a local ring (A, m) which is a factor ring of a Cohen-Macaulay ring
the finiteness of H1

m(A) is therefore equivalent to dim A/p > 1 for all prime ideals
p ∈ Ass A.

A more difficult problem is a characterization of when the ideal transform Ta(A)
is an A-algebra of finite type. This does not hold even in the case of a polynomial
ring over a field as shown by M. Nagata, see [34], in the context of Hilbert’s 14th
problem.
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2.3. Asymptotic Prime Divisors. In the following we apply some of the previous
considerations to the study of asymptotic prime ideals. To this end there is a short
excursion about graded algebras.

For a commutative Noetherian ring A let F = {an}n∈Z denote a filtration of ideals,
i.e. a family of ideals satisfying the following conditions:

a) an = A for all n ≤ 0,
b) an+1 ⊆ an for all n ∈ Z, and
c) anam ⊆ an+m for all n, m ∈ Z.

Then one may form R(F ), the Rees ring associated to F, i.e. R(F ) = ⊕n∈Zant
n ⊆

A[t, t−1], where t denotes an indeterminate. Let a = (a1, . . . , as)A denote an ideal
of A. Then F is called an a-admissible filtration, whenever an ⊆ an for all n ∈ Z.
For an a-admissible filtration it is easily seen that R(F ) is an R(a)-module, where

R(a) = ⊕n∈Zantn = A[a1t, . . . , ast, t
−1]

denotes the (extended) Rees ring of A with respect to a. Note that R(a) is the Rees
ring associated to the a-adic filtration F = {an}n∈Z.

There are several possibilities to associate an a-admissible filtration F to a given
ideal a. One of these is defined for a multiplicatively closed subset S of A. Let

a
(n)
S , n ∈ N, denote the n-th symbolic power of a with respect to S. Then F =

{a(n)
S }n∈Z forms an a-admissible filtration. The corresponding Rees ring RS(a) :=

R(F ) is called the symbolic Rees ring of a with respect to S. In the case of S = A\p
for a prime ideal p of A write RS(p) instead of RA\p(p).

Let F denote an a-admissible filtration. It follows that R(F ) is a finitely generated
R(a)-module if and only if there is an integer k ∈ N such that an+k = anak for all
n ∈ N. Equivalently this holds if and only if an+k ⊆ an for all n ∈ N and a certain
integer k ≥ 0. This behaviour sometimes is called linear equivalence of F to the
a-adic topology.

For an integer k ∈ N let Fk = {ank}n∈Z. Then R(Fk) ' R(k)(F ), where R(k)(F ) =
⊕n∈Zankt

nk denotes the k-th Veronesean subring of R(F ). Before we continue with
the study of ideal transforms there is a characterization of when R(F ) is an A-algebra
of finite type.

Proposition 2.11. Let F = {an}n∈Z denote a filtration of ideals. Then the following
conditions are equivalent:

(i) R(F ) is an A-algebra of finite type.
(ii) There is a k ∈ N such that R(Fk) is an A-algebra of finite type.
(iii) There is a k ∈ N such that R(Fk) is a finitely generated R(ak)-module.
(iv) There is a k ∈ N such that ank = (ak)

n for all n ≥ k.
(v) There is a k ∈ N such that an+k = anak for all n ≥ k.
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Proof. First show (i)⇒ (v). By the assumption there is an r ∈ N such that R(F ) =
A[a1t, . . . , art

r]. Put l = r! and k = rl. Then it follows that an =
∑

an1
1 · · · anr

r ,
where the sum is taken over all n1, . . . , nr such that

∑r
i=1 ini ≥ n. For n ≥ k it is

easy to see that there is an integer 1 ≤ i ≤ r such that ni ≥ l
i
. Whence an ⊆ an−lal

for any n ≥ k. That means an+k = anak for any n ≥ k as is easily seen.
While the implication (v) ⇒ (iv) holds trivially the implication (iv) ⇒ (iii) is a

consequence of the Artin-Rees lemma. In order to show (iii) ⇒ (ii) note that R(ak)
is an A-algebra of finite type.

Finally show (ii) ⇒ (i). For 0 ≤ i < k it follows that Ai = ⊕n∈Zank+it
nk is an

ideal of R(k)(F ), and R(k)(F ) is isomorphic to R(Fk). So Ai, 0 ≤ i < r, is a finitely
generated R(k)(F )-module. Because of R(F ) = ⊕k−1

i=0 Ait
i it turns out that R(F ) is a

finitely generated R(k)(F )-module. This proves that R(F ) is an A-algebra of finite
type. �

The implication (i) ⇒ (v) was shown by D. Rees, see [37]. In the case of a local
ring (ii) ⇒ (i) was proved by a different argument in [43].

Before we shall continue with the study of certain ideal transforms consider two
applications of the Artin-Rees Lemma. They will be useful in the study of the
Ratliff-Rush closure of an ideal.

Proposition 2.12. Let a, b, b1, . . . , bt, t ∈ N, denote ideals of a commutative Noe-
therian ring A.

a) There is a k ∈ N such that

∩t
i=1(a

n+k + bi) = an(∩t
i=1(a

k + bi)) + ∩t
i=1bi for all n ≥ 1.

b) There is a k ∈ N such that

an+k :A b = an(ak :A b) + 0 :A b for all n ≥ 1.

Proof. In order to prove a) consider the natural injective homomorphism of finitely
generated A-modules

A/ ∩t
i=1 bi → ⊕t

i=1A/bi, a + ∩t
i=1bi 7→ (a + b1, . . . , a + bt).

Then the Artin-Rees Lemma provides the existence of an integer k ∈ N such that

an+k(⊕t
i=1A/bi) ∩ (A/ ∩t

i=1 bi) = an(ak(⊕t
i=1A/bi) ∩ (A/ ∩t

i=1 bi))

for all n ∈ N. In fact this proves the statement a).
For the proof of b) let b = (b1, . . . , bs)A. Then by the Artin-Rees Lemma there is

a c ∈ N such that

an+c :A bi ⊆ an + (0 :A bi)
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for all n ∈ N and i = 1, . . . , s. Because of the statement in a) there exists a d ∈ N
such that

∩s
i=1(a

n+d + 0 :A bi) ⊆ an + ∩s
i=1(0 :A bi) = an + (0 :A b).

But now we have that ∩s
i=1(a

n :A bi) = an :A b for all n ∈ N. So finally there exists
a k ∈ N such that an+k :A b ⊆ an + (0 :A b) for all n ∈ N. By passing to A/0 :A b
the Artin-Rees Lemma proves the claim in b). �

As a first sample of ideal transforms consider T(at,t−1)(R(a)). But now we have that
T(at,t−1)(R(a)) ⊆ A[t, t−1]. So it is an easy exercise to prove that the n-th graded piece
of the ideal transform is given by

T(at,t−1)(R(a))n =

{
A for n ≤ 0,

(an)∗ for n > 0,

where (an)∗ = ∪m∈N(an+m : am) denotes the Ratliff-Rush closure of an. In the
following put R∗(a) = ⊕n∈Z(an)∗tn. A few basic results of the Ratliff-Rush closure
are listed in the following result.

Lemma 2.13. Let a be an ideal of a commutative Noetherian ring A.

a) There is an integer k ∈ N such that (an)∗ = an + 0 :A 〈a〉 for all n ≥ k. In
particular (an)∗ = an for all n ≥ k provided a is a regular ideal.

b) (an+1)∗ :A a = (an)∗ for all n ∈ N.
c) T(at,t−1)(R(a)) is a finitely generated R(a)-module if and only if a is a regular

ideal.

Proof. Fix an integer n ∈ N. Then for a sufficiently large integer m it follows that
0 :A am = 0 :A 〈a〉 and (an)∗ = (an+m + 0 :A 〈a〉) :A am. Therefore, by passing to
A/0 :A 〈a〉 we may assume that a is a regular ideal in order to prove a). Then by
2.12 it follows that

⊕n∈Z(an+1 :A a)tn

is a finitely generated R(a)-module. Therefore the Artin-Rees Lemma provides the
existence of an integer k ∈ N such that an+k+1 :A a = an(ak+1 :A a) for all n ≥ 1.
Therefore an+k+1 :A a = an+k for all n ≥ 1. This proves the claim in a).

The statement in b) follows easily by the definitions. Finally c) is a consequence
of a) and the Artin-Rees Lemma. �

Next let (A, m) denote a local Noetherian ring. For an ideal a of A consider the
ideal transform T(m,t−1)(R(a)). It is easily seen that its n-th graded component has
the following form

T(m,t−1)(R(a))n =

{
A for n ≤ 0,

an :A 〈m〉 for n > 0.
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Therefore the finiteness of T(m,t−1)(R(a)) yields some information about the existence
of an integer k ∈ N such that an+k : 〈m〉 ⊆ an for all n ≥ 1 as it is clear by the
Artin-Rees Lemma. This is a sharpening of the problem on the equivalence of the
topologies investigated at the beginning.

In the following let l(a) denote the analytic spread of a, i.e.

l(a) = dim R(a)/(m, t−1)R(a),

see D. G. Northcott and D. Rees [36] for basic results. Recall that

height a ≤ l(a) ≤ dim A.

Moreover, l(a) = dim grA(a)/mgrA(a), where grA(a) = ⊕n∈Nan/an+1 denotes the
form ring with respect to a.

Theorem 2.14. Let a denote an ideal of a local ring (A, m).

a) The ideal transform T(m,t−1)(R(a)) is a finitely generated R(a)-module if and
only if

l(aÂ + p/p) < dim Â/p for all p ∈ Ass Â.

b) T(m,t−1)(R(a)) is an A-algebra of finite type if and only if there is a k ∈ N
such that

l(akÂ : 〈mÂ〉+ p/p) < dim Â/p for all p ∈ Ass Â.

Proof. At first prove a). As a consequence of the Artin-Rees Lemma the ideal trans-
form T(m,t−1)(R(a)) is finitely generated over R(a) if and only if the corresponding

result holds for aÂ in (Â, m̂). Therefore, without loss of generality we may assume
that A is a complete local ring.

So we may assume that R(a) is the quotient of a Cohen-Macaulay ring. Further-
more there is a 1-to-1 correspondence between the associated prime ideals P of R(a)
and the associated prime ideals p of A given by

P 7→ p = P ∩ A resp. p 7→ ⊕n∈Z(an ∩ p)tn.

By virtue of 2.10 T(m,t−1)(R(a)) is a finitely generated R(a)-module if and only if
T(m/p,t−1)(R(a + p/p)) is a finitely generated R(a + p/p))-module for all p ∈ Ass A.
That is, without loss of generality we may assume (A, m) a complete local domain
after changing the notation. But under this assumption T(m,t−1)(R(a)) is a finitely
generated R(a)-module if and only if height(m, t−1)R(a) > 1. Finally A is a univer-
sally catenarian domain. Therefore it holds

height(m, t−1)R(a) = dim R(a)− dim R(a)/(m, t−1)R(a).

Because of dim R(a) = dim A + 1 and dim R(a)/(m, t−1)R(a) = l(a) this completes
the proof.

With the aid of statement a) the conclusion in b) follows by virtue of 2.11 �
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As above let a denote an ideal of a commutative Noetherien ring A. Let As(a)
resp. Bs(a) denote the ultimately constant values of Ass A/an resp. Ass an/an+1 for
all large n ∈ N, as shown by M. Brodmann in [4], see also [42].

As it will be shown in the following the previous result 2.14 has to do with the
property m ∈ As(a) for an ideal a of a local ring (A, m). To this end we modify a
result originally shown by L. Burch, see [8]. Further results in this direction were
shown by C. Huneke, see [21].

Theorem 2.15. Suppose that (A, m) denotes a local Noetherian ring. Then the
following results are true:

a) If m 6∈ Bs(a), then l(a) < dim A.
b) The converse is true provided A is a universally catenarian domain and

grA(a) is unmixed.

Proof. In order to show a) first note that the natural epimorphism

φn : an/an+1 → anĀ/an+1Ā with Ā = A/0 :A 〈a〉

is an isomorphism for all large n ∈ N. This follows easily by the Artin-Rees Lemma.
By passing to Ā one might assume that a is a regular ideal. Then m 6∈ As(a) because
of As(a) = Bs(a) for the regular ideal a, see [30].

Next investigate the Noetherian ring R∗(a). Now we claim that

Ass A/(an)∗ ⊆ Ass A/(an+1)∗ for all n ∈ N.

To this end note that (an+1)∗ : a = (an)∗ for all n ∈ N, see 2.13. Let a =
(a1, . . . , as)A. Then the natural homomorphism

A/(an)∗ → ⊕s
i=1A/(an+1)∗, r + (an)∗ 7→ (rai + (an+1)∗)

is injective for all n ∈ N. Therefore Ass A/(an)∗ ⊆ Ass A/(an+1)∗, as required.
Because of (an)∗ = an for all large n it turns out that m 6∈ Ass A/(an)∗ for all n ∈ N.
Because of T(m,t−1)(R

∗(a)) = ⊕n∈Z((an)∗ : 〈m〉)tn it follows that T(m,t−1)(R
∗(a)) =

R∗(a). By 2.8 this means that grade(m, t−1)R∗(a) > 1. But now

1 < height(m, t−1)R∗(a) ≤ dim R∗(a)− dim R∗(a)/(m, t−1).

Because R∗(a) is a finitely generated R(a)-module it implies that

dim R∗(a) = dim A + 1 and dim R∗(a)/(m, t−1)R∗(a) = l(a),

which finally proves the claim a).
In order to prove b) first note that height(m, t−1)R∗(a) = dim R∗ − l(a) since A

is universally catenarian and grA(a) is unmixed. Since (an+1)∗ :A a = (an)∗ for all
n ∈ N there is no prime ideal P of R(a) associated to R∗(a)/(t−1)R∗(a) that contains
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(at, t−1)R(a). Because of (an)∗ = an + 0 :A 〈a〉 for all sufficiently large n, see 2.13, it
is easy to see that the kernel and the cokernel of the natural graded homomorphism

R(a)/(t−1)R(a)→ R(a)∗/(t−1)R(a)∗

are finitely generated R(a)-modules whose support is contained in V ((at, t−1)R(a)).
This implies

Ass R∗(a)/(t−1)R∗(a) = {P ∈ Ass R(a)/(t−1)R(a) | P 6⊇ (at, t−1)R(a)}
as is easily seen. By the assumption it follows that R∗(a)/(t−1)R∗(a) is unmixed.
Therefore

grade(m, t−1)R∗(a) > 1 and T(m,t−1)(R
∗(a)) = R∗(a),

see 2.8. By definition this means (an)∗ : 〈m〉 = (an)∗ for all n ∈ N. Because of
(an)∗ = an for all large n this proves the statement. �

A corresponding result is true for the integral closures an of an. To this end let
R(a) denote the integral closure of R(a) in A[t, t−1]. Then

R(a)n =

{
an for n > 0,
A for n ≤ 0,

where an denotes the integral closure of an, i.e. the ideal of all elements x ∈ A
satisfying an equation xm + a1x

m−1 + . . . + am = 0, where ai ∈ (an)i, i = 1, . . . ,m.
Note that Ass A/an is an increasing sequence that becomes eventually stable for
large n, as shown by L. J. Ratliff, see [40]. Call As(a) the stable value.

Theorem 2.16. Let a denote an ideal of a local ring (A, m). Then the following
conditions are true:

a) If m 6∈ As(a), then l(a) < dim A.
b) The converse is true, provided A is a universally catenarian domain.

Proof. First note that an : 〈m〉 = an for all n ∈ N since Ass A/an, n ∈ N, forms an
increasing sequence. Hence it follows that T(m,t−1)(R(a)) = R(a). By 2.8 it implies

height(m, t−1)R(a) > 1. Therefore

1 < height(m, t−1)R(a) ≤ dim R(a)− l(a),

which proves the claim.
In order to prove the converse first note that height(m, t−1)R(a) = dim R(a)−l(a),

since A is a universally catenarian domain. Therefore the assumption implies that

1 < height(m, t−1)R(a) = height(m, t−1)R(a).

But now R(a) is a Krull domain. Hence any associated prime ideal of the principal
ideal (t−1)R(a) is of height 1. Whence by 2.8 it follows that T(m,t−1)(R(a)) = R(a).
That is, an : 〈m〉 = an for all n ∈ N, as required. �
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The statements of 2.16 were shown by J. Lipman, see [27]. It extends in a straight-
forward way to an ideal a of an arbitrary local ring (A, m). This was done by
S. McAdam in [29], see also [42] for a different approach. In order to describe
this result let mAss A denote the set of minimal prime ideals of Ass A.

Corollary 2.17. Let a denote an ideal of a local ring (A, a). Then m ∈ As(a) if and

only if l(aÂ + p/p) < dim Â/p for all p ∈ mAss Â.

Proof. First note that m ∈ Ass A/a if and only if mÂ ∈ Ass Â/aÂ, see [40]. Fur-
thermore m ∈ Ass A/a if and only if there is a minimal prime ideal p ∈ mAss A such

that m/p ∈ Ass(A/p)/(aA/p), see e.g. [42]. So the claim follows by 2.16 since the

ring Â/p is – as a complete local domain – a universally catenarian domain. �

Some of the previous ideas will be applied to the comparison of the ordinary powers

of an ideal a to the S-symbolic powers {a(n)
S }n∈N for a multiplicatively closed subset

S of the ring A. To this end use also the symbolic Rees ring RS(a) = ⊕n∈Za
(n)
S tn of

a with respect to S.

Corollary 2.18. Let S denote a multiplicatively closed subset of A. Let a denote a
regular ideal of A. Suppose that the following conditions are satisfied:

a) A is a universally catenarian domain,
b) depth grA(a)P ≥ min{1, dim grA(a)P} for all P 6⊇ grA(a)+, and
c) l(aAp) < dim Ap for all p ∈ As(a) with p ∩ S 6= ∅.

Then an = a
(n)
S for all sufficiently large n ∈ N.

Proof. As shown in the proof of 2.15 the assumption b) implies that R∗(a)/(t−1)R∗(a)
is unmixed. Furthermore recall that

Ass a
(n)
S /an = {p ∈ Ass A/an | p ∩ S 6= ∅}.

Therefore, for large n the set Ass a
(n)
S /an will stabilize to a finite set, say T (a). The

claim says that T (a) = ∅. Suppose that T (a) 6= ∅. Now recall that the claim is a
local question. Hence without loss of generality we may assume that (A, m) is a

local ring and T (a) = {m}. Whence a
(n)
S = an : 〈m〉 for all large n ∈ N.

But now investigate R∗(a) and T(m,t−1)(R
∗(a)). Since A is universally catenarian

and R∗(a)/(t−1)R∗(a) is unmixed it follows by c) that

1 < dim R∗(a)− l(a) = height(m, t−1)R∗(a).

Therefore T(m,t−1)(R
∗(a)) = R∗(a) and (an)∗ : 〈m〉 = (an)∗ for all n ∈ N. Moreover

(an)∗ = an for all large n. Putting together all of these equalities it follows that
T (a) = ∅, contracting the choice of m. �
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Suppose that condition b) in 2.18 holds for any homogeneous prime ideal. That
means that grA(a) is unmixed with respect to the height. Then the conclusion of
2.18 holds for all n ∈ N. This follows by a slight modification of the proof of 2.18.
To this end one has to replace R∗(a) by R(a).

In order to conclude with this section let us relate the finiteness conditions of the
symbolic Rees ring RS(a) to the existence of an ideal b whose n-th symbolic power
with respect to S coincides with its ordinary power for all large n ∈ N.

Theorem 2.19. Let a resp. S denote an ideal resp. a multiplicatively closed subset
of a commutative Noetherian ring A.

a) RS(a) is a finitely generated R(a)-module if and only if l(aÂP + p/p) <

dim ÂP /p for all prime ideals P ∈ As(a) such that P ∩ S 6= ∅ and all p ∈
Ass ÂP .

b) RS(a) is an A-algebra of finite type if and only if there is a k ∈ N such that

bn = b
(n)
S for all large n ∈ N, where b = a

(k)
S .

Proof. Firstly show a). Suppose that RS(a) is a finitely generated R(a)-module. Let

P ∈ As(a) denote a prime ideal such that P ∩ S 6= ∅. Then anAP : 〈PAP 〉 ⊆ a
(n)
S AP

for all n ∈ Z. Therefore T(PAP ,t−1)(R(aAP )) is – as a submodule of RSAP
(aAP ) – a

finitely generated R(aAP )-module. Therefore 2.14 proves the ’only if’ part of the
claim.

In order to prove the reverse implication note that by the Artin-Rees Lemma it
will be enough to show that there is a k ∈ N such that the module

Ek,n = (a
(n+k)
S + an)/an

vanishes for all n ≥ 1. The set of associated prime ideals of Ek,n is contained in
the finite set X = ∪n≥1{P ∈ Ass A/an | P ∩ S 6= ∅}. Therefore the vanishing of
Ek,n is a local question for finitely many prime ideals in X. By induction it will be
enough to prove the vanishing of Ek,n at the localization with respect to a minimal
prime ideal in X. By changing the notation let (A, m) denote the local ring at this

localization. Because of the choice of m it implies that a
(n)
S = an :A 〈m〉 for all n ∈ N.

By 2.14 it follows that T(m,t−1)(R(a)) is a finitely generated R(a)-module. Therefore
{m} 6∈ Ass Ek,n for a certain k ∈ N and all n ≥ 1, i.e. Ek,n = (0), as required.

Finally show b). The claim is an easy consequence of 2.11. Recall that bn = a
(nk)
S

if and only if bn = b
(n)
S . �

2.4. The Lichtenbaum-Hartshorne Vanishing Theorem. The Lichtenbaum-
Hartshorne vanishing theorem for local cohomology, see [16], characterizes the van-
ishing of Hd

a (A) for an ideal a in a d-dimensional local ring (A, m). Our proof yields
an essential simplification by the use of ideal topologies.
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For a finitely generated d-dimensional A-module M let (Ass M)d denote all the
associated prime ideals of M with dim A/p = d. For an ideal a of A let u =

u(aÂ) denote the intersection of those primary components q of 0 in Â such that

dim Â/(aÂ + p) > 0 for p ∈ (Ass Â)d, where p = Rad q and d = dim A.

Theorem 2.20. Let a denote an ideal in a d-dimensional local ring (A, m). Then
Hd

a (A) ' HomA(u, E), where E denotes the injective hull of the residue field A/m. In

particular Hd
a (A) is an Artinian A-module and Hd

a (A) = 0 if and only if dim Â/(aÂ+

p) > 0 for all p ∈ (Ass Â)d.

Proof. As above let T = HomA(·, E) denote the Matlis duality functor. Because of
the following isomorphisms

T (Hd
a (A)) ' T (Hd

a (A)⊗A Â) ' T (Hd
a bA(Â))

one may assume without loss of generality that A is a complete local ring. So A is
the factor ring of a complete local Gorenstein ring (B, n) with dim A = dim B = d,
say A = B/b. Replacing a by its preimage in B we have to consider T (Hd

a (B/b)).
Let bd denote the intersection of all of the primary components q of b such that
dim B/p = d for p its associated prime ideal. Because of dim bd/b < d the short
exact sequence

0→ bd/b→ B/b→ B/bd → 0

implies that Hd
a (B/b) ' Hd

a (B/bd). Replacing bd by b one may assume that B/b is
unmixed with respect to the dimension. There is an isomorphism

T (Hd
a (B)⊗B/b) ' HomB(B/b, T (Hd

a (B))).

Because the Hom-functor transforms direct into inverse limits it turns out that

T (Hd
a (B)) ' lim←−T (Extd

B(B/an, B)) ' lim←−H0
n(B/an),

as follows by the local duality, see 1.8. Because of H0
n(B/an) = an : 〈n〉/an and

because B is a complete local ring we see that lim←−H0
n(B/an) ' ∩n∈N(an : 〈n〉). But

now the ideal ∩n∈N(an : 〈n〉) is the ideal v of B that is the intersection of all primary
components q of 0 such that dim B/(a + p) > 0 for p the associated prime ideal of
q, see 2.3. Therefore

T (Hd
a (B)⊗B B/b) ' HomB(B/b, v) ' (0 :B b) ∩ v.

Furthermore it follows that (0 :B b) ∩ b = 0 since b is an unmixed ideal in a
Gorenstein ring B with dim B = B/b. Therefore (0 :B b)∩ v ' ((0 :B b)∩ v + b)/b.
Hence (0 :B b)∩v is isomorphic to an ideal of B/b. Finally note that u ' (0 :B b)∩v
as follows by considering the set of associated prime ideals. Then the statement is
a consequence of the Matlis duality. �
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The vanishing of the ideal u is equivalent to the equivalence of certain ideal topolo-
gies, see 2.2. So there is another characterization of the vanishing of Hd

a (A) for
certain local rings.

Corollary 2.21. Suppose that (A, m) denotes a formally equidimensional local ring.
Then Hd

a (A) = 0, d = dim A, if and only if the topology defined by {an : 〈m〉}n∈N is
equivalent to the a-adic topology.

Proof. By virtue of 2.2 {an : 〈m〉}n∈N is equivalent to the a-adic topology if and only

if dim Â/(aÂ+ p) > 0 for all p ∈ Ass Â. But now dim A = dim Â/p for all p ∈ Ass Â
by the assumption on A. So the claim follows by 2.20. �

2.5. Connectedness results. Let a, b denote two ideals of a commutative Noe-
therian ring A. Then there is a short exact sequence

0→ A/a ∩ b
i→ A/a⊕ A/b

p→ A/(a + b)→ 0,

where i(a+ a∩ b) = (a+ a,−a+ b) and p(a+ a, b+ b) = a+ b+(a+ b) for a, b ∈ A.
Because of the direct summand in the middle this sequence provides a helpful tool
for connecting properties. This short exact sequence is an important ingredient for
the next lemma.

In order to prove the connectedness theorem we need some preparations. A basic
tool for this section will be the so-called Mayer-Vietoris sequence for local cohomol-
ogy helpful also for different purposes.

Lemma 2.22. Let a, b denote two ideals of a commutative Noetherian ring A. Then
there is a functorial long exact sequence

. . .→ Hn
a+b(M)→ Hn

a (M)⊕Hn
b (M)→ Hn

a∩b(M)→ Hn+1
a+b (M)→ . . .

for any A-module M.

Proof. Let c denote an ideal of the ring A. Then first note that

lim−→Extn(A/cn, M) ' Hn
c (M)

for any A-module M and all n ∈ Z, see e.g. [14]. Now consider the short exact
sequence at the beginning of this subsection for the ideals an and bn. Then take into
account that the topologies defined by the families {an + bn}n∈N and {an ∩ bn}n∈N
are equivalent to the (a + b)-adic and a∩ b-adic topology resp. Therefore the direct
limit of the long exact Ext-sequence proves the claim. �

Our first connectedness result is the following statement, a slight generalization
of Hartshorne’s connectedness result, see [15].

Theorem 2.23. Let c denote an ideal of a local ring (A, m). Suppose that grade c >
1. Then the scheme Spec A \ V (c) is connected.
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Proof. Because of grade c > 1 it follows that H i
c(A) = 0 for i = 0, 1. Assume that

Spec A \ V (c) is not connected. Then there are non-nilpotent ideals a, b satisfying
the following properties:

1) a ∩ b is nilpotent,
2) Spec A\V (a) and Spec A\V (b) are disjoint and non-empty subsets of Spec A.
3) Spec A \ V (c) = (Spec A \ V (a)) ∪ (Spec A \ V (b))

Note that these conditions imply that Rad(a + b) = Rad c. Now consider the first
part of the Mayer-Vietoris sequence

0→ H0
a+b(A)→ H0

a (A)⊕H0
b (A)→ H0

a∩b(A)→ H1
a+b(A).

Because of grade c > 1 and Rad(a + b) = Rad c it turns out that H i
a+b(A) = 0 for

i = 0, 1. Moreover a ∩ b is nilpotent. Whence it yields that H0
a∩b(A) = A. So the

Mayer-Vietoris sequence implies an isomorphism H0
a (A)⊕H0

b (A) ' A. Since the ring
A – as a local ring – is indecomposable it follows either H0

a (A) = A and H0
b (A) = 0

or H0
a (A) = 0 and H0

b (A) = A. But this means that a resp. b is a nilpotent ideal.
Therefore we have a contradiction, so Spec A \ V (c) is connected. �

The author is grateful to Leif Melkersson for suggesting the above simplification
of the original arguments.

Let a denote the homogeneous ideal in A = k[x0, . . . , x3] describing the union
of two disjoint lines in P3

k. Suppose that a is up to the radical equal to an ideal c
generated by two elements. Then Spec A \ V (a) = Spec A \ V (c) is disconnected.
Therefore grade c ≤ 1, contradicting the fact that c is an ideal of height 2 in a Cohen-
Macaulay ring A. So a is not set-theoretically a complete intersection. For further
examples of this type see [15].

The previous result implies as a corollary a result on the length of chains of prime
ideals in a catenarian local ring.

Corollary 2.24. Let (A, m) denote a local Noetherian ring satisfying the condition
S2. Suppose that A is catenarian. Then it is equidimensional, i.e. all of the minimal
prime ideals have the same dimension.

Proof. Let p, q denote two minimal prime ideals of Spec A. Then it is easily seen
that there is a chain of prime ideals

p = p1, . . . , pr = q

such that height(pi, pi+1) = 1 for all i = 1, . . . , r − 1. Hence by the catenarian
condition

dim A/pi = 1 + dim A/(pi, pi+1) = dim A/pi+1.

By iterating this (r − 1)-times it follows that dim A/p = dim A/q, as required. �
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In order to prove the connectedness theorem inspired by G. Faltings we need a
lemma first invented by M. Brodmann and J. Rung, see [5].

Lemma 2.25. Let (A, m) denote an analytically irreducible domain with d =
dim A > 1. Suppose there are two ideals b, c of A such that dim A/b > 0, dim A/c >
0, and Hd−1

b∩c (A) = 0. Then dim A/b + c > 0.

Proof. Suppose the contrary is true. Then b + c is an m-primary ideal. The Mayer-
Vietoris sequence provides an exact sequence

Hd−1
b∩c (A)→ Hd

m(A)→ Hd
b (A)⊕Hd

c (A)→ Hd
b∩c(A).

Because A is analytically irreducible and because of the vanishing of Hd−1
b∩c (A) the

vanishing result 2.20 yields an isomorphism Hd
m(A) ' Hd

b (A) ⊕ Hd
c (A). Because of

the non-vanishing of Hd
m(A) this provides the non-vanishing of one of the direct sum-

mands, say Hd
b (A). By 2.20 this means that b is an m-primary ideal, contradicting

the assumption. �

This lemma is the main technical tool for the connectedness result given in the
sequel.

Theorem 2.26. Suppose a denotes an ideal of an analytically irreducible domain
(A, m) with d = dim A > 1. Suppose that Hn

a (A) = 0 for n = d − 1, d. Then
(Spec A/a) \ V (m/a) is connected.

Proof. Suppose the contrary. Then there exist ideals b, c of A such that Rad(b∩c) =
Rad a and b + c is m-primary, but neither b nor c is an m-primary ideal. Because of
the vanishing of Hd−1

a (A) Lemma 2.25 provides a contradiction. �

The preceding result shows for instance the non-vanishing of H3
a (A) for the ideal

a of the union of two disjoint lines in P3
k and A = k[x0, . . . , x3]. This yields another

proof that a is not set-theoretically a complete intersection.
In the following let us generalize this connectedness result to the case of local rings

that are not necessarily analytically unmixed. This was obtained by C. Huneke and
M. Hochster, see [20], by a different argument.

Theorem 2.27. Let (A, m) denote a d-dimensional local ring which is the quotient
of a Gorenstein ring. Assume that A satisfies the condition S2. Suppose that a
denotes an ideal of A such that Hn

a (A) = 0 for n = d − 1, d. Then the scheme
(Spec A/a) \ V (m/a) is connected.

Proof. As in the proof of 2.26 suppose the contrary. That is, there exist ideals b, c
of A such that Rad(b∩ c) = Rad a and b + c is m-primary, but neither b nor c is an



40 P. SCHENZEL

m-primary ideal. By changing the notation let us assume that A is a complete local
ring. Then the Mayer-Vietoris sequence provides an isomorphism

Hd
m(A) ' Hd

b (A)⊕Hd
c (A).

This implies that KA ' u ⊕ v, where u resp. v denotes the intersection of those
primary components q of the zero-ideal of A such that dim A/b + p > 0 resp.
dim A/c + p > 0 for p, the associated prime ideal of q, see 2.20. By the definitions,
see Section 1.2, it follows now that KKA

' Ku ⊕Kv. Moreover since A satisfies S2

it is equidimensional by 2.22. Therefore A ' KKA
, as turns out by 1.14.

By the Nakayama lemma one of the direct summands, say Kv, is zero, while for
the second summand A ' Ku. By 1.9 it follows that Ass Ku = Ass u. Because of

AssA u = {p ∈ Ass A | dim A/b + p = 0}
the equality Ass A = Ass Ku implies that m ⊆ Rad(b + p) for any associated prime
ideal p of A. As is easily seen it follows that m ⊆ Rad(b), a contradiction. Therefore
(Spec A/a) \ V (m/a) is connected, as required. �

3. Local Cohomology and Syzygies

3.1. Local cohomology and Tor’s. As above let (A, m) denote a local ring. Let
T (·) = HomA(·, E) denote the Matlis duality functor, where E = EA(A/m) is the
injective hull of the residue field. In the following consider a length estimate for
the length of TorA

n (M, N) resp. Extn
A(M, N) under the additional assumption that

M ⊗A N is an A-module of finite length.

Lemma 3.1. Let M, N denote finitely generated A-modules such that M ⊗A N is
an A-module of finite length. Then

Exti
A(M, Hj

m(N)) and TorA
i (M, Hj

m(N))

are A-modules of finite length for all i, j ∈ Z.

Proof. Without loss of generality we may assume that A is a complete local ring.
Then A is a quotient of a local Gorenstein ring B with dim B = r. By the local
duality theorem, see 1.8, it turns out that Hj

m(N) ' T (Kj
N) for all j ∈ Z, where

Kj
N ' Extr−j

B (N, B) with the natural A-module structure, see 1.8. Moreover there
are natural isomorphisms

Exti
A(M, Hj

m(N)) ' T (TorA
i (M, Kj

N)) and TorA
i (M, Hj

m(N)) ' T (Exti
A(M, Kj

N))

for all i, j ∈ Z. But now Supp Kj
N ⊆ V (AnnA N) for all j ∈ Z. Therefore

Supp TorA
i (M, Kj

N) ⊆ V (AnnA M, AnnA N).



LOCAL COHOMOLOGY 41

By the assumption M ⊗A N is an A-module of finite length. That is,

V (AnnA M, AnnA N) ⊆ V (m),

which proves that TorA
i (M, Kj

N) is an A-module of finite length for all i, j ∈ Z too.
By the Matlis duality the first part of the claim is shown. The second part follows
by the same argument. �

The previous result 3.1 provides the desired bounds for the length of TorA
n (M, N)

and Extn
A(M, N).

Theorem 3.2. Let M, N be two finitely generated A-modules such that M ⊗A N is
an A-module of finite length. Then

a) LA(Extn
A(M, N)) ≤

∑
i≥0 LA(Exti

A(M, Hn−i
m (N))) and

b) LA(TorA
n (M, N)) ≤

∑
i≥0 LA(TorA

n+i(M, H i
m(N)))

for all n ∈ Z.

Proof. First choose x = x1, . . . , xd, d = dim A, a system of parameters of A. There-
fore Rad x = m. The corresponding Čech complex K · = K ·

x has the property that
Hn(K · ⊗A N) ' Hn

m(N) for all n ∈ Z, see 1.3. Furthermore choose F · a min-
imal free resolution of M. In order to show the first claim consider the complex
K · ⊗A HomA(F ·, N). Because of the structure of Ki as the direct sum of localiza-
tions it turns out that the natural homomorphism

HomA(F ·, N)→ K · ⊗A HomA(F ·, N)

induces an isomorphism in cohomology. Moreover

K · ⊗A HomA(F ·, N)
∼→ HomA(F ·, K · ⊗A N)

as it is easily seen. So there is a spectral sequence

Ei,j
2 = Exti

A(M, Hj
m(N))⇒ En = Extn

A(M, N).

Therefore Extn
A(M, N) possesses a finite filtration whose quotients Ei,n−i

∞ are mod-
ules of finite length such that LA(Ei,n−i

∞ ) ≤ LA(Ei,n−i
2 ) < ∞, which proves the first

bound.
In order to prove the second bound proceed by a similar argument. Consider the

complex K · ⊗A (F · ⊗A N). As above the natural map F · ⊗A N → K · ⊗A (F · ⊗A N)
induces an isomorphism in cohomology. In order to continue consider the spectral
sequence

Ei,j
2 = TorA

−i(M, Hj
m(N))⇒ En = TorA

−n(M, N)

for computing the cohomology of K · ⊗A (F · ⊗A N). It provides – in a similar way
as above – the second claim. �
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In the particular case of N a Cohen-Macaulay module with M ⊗A N of finite
length the spectral sequences in the proof of 3.2 degenerate to isomorphisms.

Corollary 3.3. Let N be a Cohen-Macaulay module. Then there are the following
isomorphisms

Extn
A(M, N) ' Extn−d

A (M, Hd
m(N)) and TorA

n (M, N) ' TorA
n+d(M, Hd

m(N))

for all n ∈ Z, where d = dim N.

Under the additional assumption that M is an A-module of finite projective
dimension it is of some interest to determine the largest integer n such that
TorA

n (M, N) 6= 0. This yields an equality of the Auslander-Buchsbaum type, shown
by M. Auslander, see [1, Theorem 1.2].

Theorem 3.4. Let M, N be two non-zero finitely generated A-modules. Suppose
that pdA M is finite. Then

sup{n ∈ Z | TorA
n (M, N) 6= 0}+ depthA N = pdA M

provided depth TorA
s (M, N) = 0, where s = sup{n ∈ Z | TorA

n (M, N) 6= 0}. In
particular the equality holds whenever M ⊗A N is an A-module of finite length.

Proof. Set p = pdA M and t = depthA N. As in the proof of 3.2 consider the complex
C · := K ·⊗A F ·⊗A N, where K · resp. F · denotes the Čech complex resp. the (finite)
minimal free resolution of M. Then there is the following spectral sequence

E−i,j
2 = TorA

i (M, Hj
m(N))⇒ E−i+j = H−i+j(C ·).

Consider the stages −i + j =: n ≤ −p + t. In the case n < −p + t it follows
that E−i,j

2 = 0. Note that whenever j < t, then Hj
m(N) = 0, and whenever j ≥ t,

then i > p = pdA M. In the case n = −p + t it follows by a similar consideration
that E−i,j

2 = 0 for i 6= p. So there is a partial degeneration to the isomorphism
H−p+t(C ·) ' TorA

p (M, H t
m(N)) and the vanishing Hn(C ·) = 0 for all n < −p + t.

Next show that H−p+t(C ·) 6= 0. By 1.5 H t
m(N) is an Artinian A-module. Therefore

it possesses a submodule which is isomorphic to k = A/m. The corresponding short
exact sequence

0→ k → H t
m(N)→ C → 0

induces an injection 0→ TorA
p (M, k)→ TorA

p (M, H t
m(N)). Because of TorA

p (M, k) 6=
0 this shows the claim.

In order to continue with the proof consider the spectral sequence

Ei,−j
2 = H i

m(TorA
j (M, N))⇒ Ei−j = H i−j(C ·).

Put i−j =: n. In the case of n < −s it follows that Ei,−j
2 = 0 by similar arguments as

above in the first spectral sequence. Note that s = sup{n ∈ Z | TorA
n (M, N) 6= 0}.
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Therefore Hn(C ·) = 0 for all n < −s and H−s(C ·) ' H0
m(TorA

s (M, N)) 6= 0. Recall
that depth TorA

s (M, N) = 0. This finally proves −s = −p + t, as required. �

Another case of describing sup{n ∈ Z | TorA
n (M, N) 6= 0} was investigated by

M. Auslander, see [1, Theorem 1.2]. It follows in the same way as above by consi-
dering both of the spectral sequences.

As an immediate consequence of 3.4 it turns out that depthA N ≤ pdA M pro-
vided M ⊗A N is an A-module of finite length. Under these assumptions a much
stronger inequality holds, namely dimA N ≤ pdA M. This is the Intersection Theo-
rem proved by C. Peskine and L. Szpiro, see [39], and M. Hochster, see [19], in the
equicharacteristic case, and finally by P. Roberts, see [38], in the remaining case.
For a summary of these and related results about Cohen-Macaulay rings see also
the monograph [7].

In relation to that the following Cohen-Macaulay criterion could be of some in-
terest.

Corollary 3.5. Let M, N be two finitely generated A-modules such that M ⊗A N is
of finite length. Suppose that pdA M is finite. Then N is a Cohen-Macaulay module
with depthA N = pdA M if and only if TorA

n (M, N) = 0 for all n ≥ 1.

Proof. First assume that N is a Cohen-Macaulay module. Then

TorA
n (M, N) ' TorA

n+d(M, Hd
m(N)), d = dim N,

as follows by 3.3. But now d = pdA M. Therefore the last module vanishes for all
positive n.

For the proof of the reverse implication note that

0 = pdA M − depthA N ≥ pdA M − dimA N

as follows by 3.4. But now pdA M−dimA N ≥ 0 by view of the Intersection Theorem.
This finishes the proof. �

By view of the formula of M. Auslander and D. Buchsbaum one may interpret
the inequality depthA N ≤ pdA M in the following way

depthA N + depthA M ≤ depth A,

provided M ⊗A N is of finite length and pdA M is finite. One might think of it as
a generalization of Serre’s inequality dimA N + dimA M ≤ dim A in the case of A a
regular local ring.

In connection to 3.5 the rigidity of Tor could be of some interest. Let n ∈ N. Then
the conjecture says that TorA

n+1(M, N) = 0 provided TorA
n (M, N) = 0. This is true

for a regular local ring (A, m) as shown by J. P. Serre, see [45], in the case of unram-
ified regular local rings, and finally for any regular local ring by S. Lichtenbaum, see
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[26]. There are also related results in [1]. The rigidity conjecture for a general local
ring and pdA M <∞ was disproved by R. Heitmann’s example, see [18]. For some
recent developments on the rigidity in connection to non-regular local rings, see the
work of C. Huneke and R. Wiegand in [23].

Under the assumptions of 3.5 J. P. Serre, see [45], considered the Euler charac-
teristic χ(M, N) =

∑
i≥0(−1)iLA(TorA

i (M, N)) as an intersection number. More
generally for n ∈ N he defined the partial Euler characteristics

χn(M, N) =
∑
i≥0

(−1)iLA(TorA
n+i(M, N)).

Note that χ(M, N) = χ0(M, N). In the case of an unramified regular local ring
(A, m) J. P. Serre, see [45], proved the non-negativity of χ(M, N). Moreover he
conjectured that this is true for any regular local ring. Recently O. Gabber, see [11],
proved the non-negativity of χ(M, N) for any regular local ring. As follows by view
of R. Heitmann’s example χ1(M, N) ≥ 0 does not hold in the case of an arbitrary
local ring and pdA M <∞.

The Cohen-Macaulay property of N in 3.5 provides that LA(M⊗AN) = χ0(M, N).
This equality is equivalent to the vanishing of χ1(M, N). Consider the particular
case of a finitely generated A-module N and M = A/xA, where x = x1, . . . , xr

denotes an A-regular sequence. Then pdA M = r. Suppose that N/xN is an A-
module of finite length, i.e. dim N ≤ r. Then χ0(M, N) = e0(x; N) as follows since
TorA

i (A/xA, N) ' Hi(x; N), i ∈ N, and
∑

i≥0(−1)iLA(Hi(x; N)) = e0(x; N), where
e0(x; N) denotes the multiplicity of N with respect to x, see [2]. So the equality
L(N/xN) = e0(x; N) says that N is a Cohen-Macaulay module with dim N = r.

Conjecture 3.6. Let M, N be two finitely generated A-modules such that M ⊗A N
is an A-module of finite length and pdA M <∞.

a) (Cohen-Macaulay Conjecture) Suppose that LA(M⊗AN) = χ0(M, N). Does
it follows that N is a Cohen-Macaulay module with pdA M = depthA N?

b) (Weak Rigidity Conjecture) Suppose that χn(M, N) = 0 for a certain n ∈ N.
Does it follows that χn+1(M, N) = 0?

Suppose that the weak rigidity conjecture is true. Then χn(M, N) = 0 implies
inductively that TorA

k (M, N) = 0 for all k ≥ n. To this end recall that pdA M is
finite. Let us return to this observation in the following result.

Corollary 3.7. Let a, b be two ideals of a local ring (A, m). Assume that pdA A/a
is finite and a + b is an m-primary ideal.

a) Suppose that A/a is a Cohen-Macaulay ring with depth A/a + depth A/b =
depth A. Then a ∩ b = ab (resp. χ(M, N) = LA(A/(a + b)).

b) Suppose that A/a is rigid (resp. weakly rigid). Then the converse is true.
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Proof. The statement in a) is a consequence of 3.5. Recall that TorA
1 (A/a, A/b) =

a ∩ b/ab. So its vanishing yields the equality of the intersection with the product.
The statement in b) is clear by the above discussion. �

In the case of A a regular local ring this says that a ∩ b = ab if and only if
dim A/a+dim A/b = dim A and both A/a and A/b are Cohen-Macaulay rings. This
was shown by J. P. Serre, see [45]. So one might think of 3.7 as a generalization to
the non-regular case.

3.2. Estimates of Betti numbers. In the case M = k the second formula shown
in 3.2 provides estimates of the Betti numbers of a module in terms of Betti numbers
of its local cohomology modules. This point of view is pursued in this subsection.

To this end let the local ring (A, m) be the quotient of a regular local ring (B, n)
with r = dim B. We are interested in the minimal free resolution of M as a module
over B. Because of the local duality, see 1.8, the local cohomology modules of M
are the Matlis duals of Kn

M ' Extr−n
B (M, B), n ∈ Z, the modules of deficiency of

M. Note that KM = Kd
M , d = dim M, is called the canonical module of M. In the

following let

βn(M) = dimk TorB
n (k,M), n ∈ Z,

denote the n-th Betti number of M. Here k denotes the residue field of B.

Theorem 3.8. Let M denote a finitely generated B-module. Then

βn(M) ≤
{ ∑r−n

i=0 βr−n−i(K
i
M) for n > c, and∑d

i=0 βr−n−i(K
i
M) for n ≤ c,

where c = r − d, d = dim M, denotes the codimension of M.

Proof. In order to prove the bounds note that for a B-module X and all n ∈ Z there
is an isomorphism

TorB
n (k,X) ' Hn(x; X),

where Hn(x; X) denotes the Koszul homology of X with respect to x = x1, . . . , xr,
a minimal generating set of n, the maximal ideal of the regular local ring B. This
follows because Hn(x; B) provides a minimal free resolution of B/n over B. Because
of the Matlis duality it yields that

Hn+i(x; T (Ki
M)) ' T (Hn+i(x; Ki

M)).

By the self-duality of the Koszul complex it turns out that

Hn+i(x; Ki
M) ' Hr−n−i(x; Ki

M).

By counting the k-vector space dimension this implies βn+i(H
i
m(M)) = βr−n−i(K

i
M)

for all i, n ∈ Z. Therefore the claim follows by virtue of 3.2. �
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In the particular case of M a Cohen-Macaulay B-module the underlying spectral
sequence degenerates, see 3.3. This proves that βn(M) = βc−n(KM), 0 ≤ n ≤ c.
This is well known since HomB(·, B) preserves exactness of F · in this case. Here F ·

denotes the minimal free resolution of M.

Corollary 3.9. Let M be a finitely generated B-module with pdA M = p and
depthB M = t. Then βp(M) = β0(K

t
M). That is the rank of the last module in a

minimal free resolution of M is given by the minimal numbers of generators of the
first non-vanishing Ki

M .

Proof. There is a partial degeneration of the spectral sequence to the isomorphism

TorB
p (k,M) ' TorB

r (k,H t
m(M)).

As above TorB
r (k,H t

m(M)) ' T (Hr(x; Kt
M)) ' T (H0(x; Kt

M)), which proves the
claim. Here r denotes the dimension of B or – what is the same – the minimal
number of generators of n, the maximal ideal of the regular local ring B. �

A case of a particular interest is the situation when H i
m(M), i < d := dimA M, are

finite dimensional A/m-vector spaces. Call a finitely generated A-module M with
this property a quasi-Buchsbaum module.

Corollary 3.10. Let M denote a quasi-Buchsbaum module over the local ring
(A, m). Then

βn(M) ≤
r−n∑
i=0

(
r

n + i

)
dimk H i

m(M)

for all n > c, where k = A/m denotes the residue field.

Proof. It is an immediate consequence of 3.8. Note that H i
m(M), i < d, are finite-

dimensional k-vector spaces. Moreover βr−n−i(k) =
(

r
n+i

)
since B is a regular local

ring of embedding dimension r. �

3.3. Castelnuovo-Mumford regularity. In order to obtain more precise informa-
tion about the syzygies it is helpful to have additional structure, e.g. the structure
of a graded k-algebra. So let A = ⊕n≥0An denote a Noetherian graded algebra with
A0 = k a field and A = A0[A1]. Then A is the epimorphic image of the polynomial
ring B = k[X1, . . . , Xr], where r = dimk A1. In the following let M denote a finitely
generated graded A-module. Then one might consider it as a module over B. The
finite dimensional k-vector spaces TorB

n (k,M) are graded. They reflect information
about the degrees of the minimal generators of the n-th module of syzygies of M.

The Čech complex K ·
x of B with respect to x = X1, . . . , Xr is a complex of graded

B-modules. In fact it is a flat resolution of the system of inverse polynomials. So
the local cohomology modules of a graded B-module are also graded and therefore



LOCAL COHOMOLOGY 47

Hn
m(M) ' Hn(K ·

x ⊗A M) is a homomorphism of degree zero. Here m denotes the
homogeneous ideal generated by all variables.

For a graded B-module N let e(N) = sup{n ∈ Z | Nn 6= 0}, where Nn denotes
the n-th graded piece of N. In the case of N an Artinian module it follows that
e(N) <∞. Recall that e(N) = −∞ in the case N = 0.

Then define reg M the Castelnuovo-Mumford regularity of M a finitely generated
graded B-module by

reg M = max{e(Hn
m(M)) + n | n ∈ Z}.

Note that it is well-defined by 1.5.
The basics for this construction were initiated by D. Mumford, see [31], who

attributed it to Castelnuovo. The importance of the regularity lies in the following
fact, a relation to the graded Betti numbers of M. There is the equality

reg M = max{e(TorB
n (k,M))− n | n ∈ Z},

shown by D. Eisenbud and S. Goto, see [10]. In the case of M a Cohen-Macaulay
module it turns out that reg M = e(TorB

c (k,M))− c, c = codim M.
The following provides an improvement by showing that – just as in the Cohen-

Macaulay case – the regularity is determined by the tail of the minimal free resolution
of M.

Theorem 3.11. Let M denote a finitely generated graded B-module. Let s ∈ N be
an integer. Then the following two integers coincide

a) max{e(H i
m(M)) + i | 0 ≤ i ≤ s} and

b) max{e(TorB
j (k,M))− j | r − s ≤ j ≤ r}.

In particular for s = dimB M it follows that

reg M = max{e(TorB
j (k,M))− j | c ≤ j ≤ r},

where c = r − dimB M denotes the codimension of M.

Proof. The proof is based on the following spectral sequence

Ei,j
2 = H−i(x; Hj

m(M))⇒ Ei+j = H−i−j(x; M)

as it was considered in the proof of 3.2. Here x = X1, . . . , Xr denotes the set of
variables in B. Note that TorB

n (k,N) ' Hn(x; N) for all n ∈ Z and any B-module
N. Moreover the spectral sequence is a spectral sequence of graded modules and all
the homomorphisms are homogeneous of degree zero.

First show the following claim:

Suppose that Hs(x; M)s+t 6= 0 for a certain t ∈ Z and r − i ≤ s ≤ r. Then there
exists a j ∈ Z such that 0 ≤ j ≤ i and Hj

m(M)t−j 6= 0.



48 P. SCHENZEL

Assume the contrary, i.e., Hj
m(M)t−j = 0 for all 0 ≤ j ≤ i. Then consider the

spectral sequence

[E−s−j,j
2 ]t+s = Hs+j(x; Hj

m(M))t+s ⇒ [E−s]t+s = Hs(x; M)t+s.

Recall that all the homomorphisms are homogeneous of degree zero. Now the cor-
responding E2-term is a subquotient of

[⊕Hj
m(M)(

r
s+j)(−s− j)]t+s.

Let j ≤ i. Then this vectorspace is zero by the assumption about the local cohomol-
ogy. Let j > i. Then s + j > s + i ≥ r and

(
r

s+j

)
= 0. Therefore the corresponding

E2-term [E−s−j,j
2 ]t+s is zero for all j ∈ Z. But then also all the subsequent stages

are zero, i.e., [E−s−j,j
∞ ]t+s = 0 for all j ∈ Z. Whence [E−s]t+s = Hs(x; M)t+s = 0,

contradicting the assumption.
The second partial result shows that a certain non-vanishing of Hn

m(M) implies the
existence of a certain minimal generator of a higher syzygy module. More precisely
we show the following claim:

Let r = dim B denote the number of variables of B. Suppose that there are integers
s, b such that the following conditions are satisfied:

a) H i
m(M)b+1−i = 0 for all i < s and

b) Hr(x; Hs
m(M))b+r−s 6= 0

Then it follows that Hr−s(x; M)b+r−s 6= 0.

Note that the condition in b) means that Hs
m(M) possesses a socle generator in

degree b− s. Recall that r denotes the number of generators of m.
As above we consider the spectral sequence

E−r,s
2 = Hr(x; Hs

m(M))⇒ E−r+s = Hr−s(x; M)

in degree b + r − s. The subsequent stages of [E−r,s
2 ]b+r−s are derived by the coho-

mology of the following sequence

[E−r−n,s+n−1
n ]b+r−s → [E−r,s

n ]b+r−s → [E−r+n,s−n+1
n ]b+r−s

for n ≥ 2. But now [E−r−n,s+n−1
n ]b+r−s resp. [E−r+n,s−n+1

n ]b+r−s are subquotients of

Hr+n(x; Hs+n−1
m (M))b+r−s = 0 resp. Hr−n(x; Hs−n+1

m (M))b+r−s = 0.

For the second module recall that it is a subquotient of

[⊕Hs−n+1
m (M)(

r
r−n)(−r + n)]b+r−s = 0, n ≥ 2.

Therefore [E−r,s
2 ]b+r−s = [E−r,s

∞ ]b+r−s 6= 0 and

[E−r+s]b+r−s ' Hr−s(x; M)b+r−s 6= 0

as follows by the filtration with the corresponding E∞-terms.
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Now let us prove the statement of the theorem. First of all introduce two abbre-
viations. Put

a := max{e(TorB
j (k,M))− j | r − s ≤ j ≤ r}.

Then by the first claim it follows that a ≤ b, where

b := max{e(H i
m(M)) + i | 0 ≤ i ≤ s}.

On the other hand choose j an integer 0 ≤ j ≤ s such that b = e(Hj
m(M))+ j. Then

Hj
m(M)b−j 6= 0, Hj

m(M)c−j = 0 for all c > b, and H i
m(M)b+1−i = 0 for all i < j.

Recall that this means that Hj
m(M) has a socle generator in degree b− j. Therefore

the second claim applies and TorB
r−j(K, M)b+r−j 6= 0. In other words, b ≤ a, as

required. �

An easy byproduct of our investigations is the above mentioned fact that

reg M = e(TorB
c (K, M))− c, c = r − dim M,

provided M is a Cohen-Macaulay module.
It is noteworthy to say that P. Jørgensen, see [24], investigated a non-commutative

Castelnuovo-Mumford regularity. In fact he generalized 3.11 to the non-commutative
situation by an interesting argument.

Theorem 3.12. Let M be a finitely generated graded B-module with d = dimB M.
Suppose there is an integer j ∈ Z such that for all q ∈ Z either

a) Hq
m(M)j−q = 0 or

b) Hp
m(M)j+1−p = 0 for all p < q and Hp

m(M)j−1−p = 0 for all p > q.

Then for s ∈ Z it follows that

(1) TorB
s (k,M)s+j ' ⊕r−s

i=0(TorB
r−s−i(k,Ki

M)s+j)
∨ provided s > c, and

(2) TorB
s (k,M)s+j ' ⊕d−1

i=0 (TorB
s+i(k,Ki

M)r−s−j)
∨ ⊕ (TorB

c−s(k,KM)r−s−j)
∨, pro-

vided s ≤ c,

where Ki
M = Extr−i

B (M, B(−r)), 0 ≤ i < d, denote the module of deficiencies and
KM is the canonical module of M.

Proof. As above consider the spectral sequence

E−s−i,i
2 = Hs+i(x; H i

m(M))⇒ E−s = Hs(x; M)

in degree s+j. Firstly we claim that [E−s−i,i
2 ]s+j ' [E−s−i,i

∞ ]s+j for all s ∈ Z. Because

[E−s−i,i
2 ]s+j is a subquotient of

[⊕H i
m(M)(

r
s+i)(−s− i)]s+j

the claim is true provided H i
m(M)j−i = 0. Suppose that H i

m(M)j−i 6= 0. In order to

prove the claim in this case too note that [E−s−i,i
n+1 ]s+j is the cohomology at

[E−s−i−n,i+n−1
n ]s+j → [E−s−i,i

n ]s+j → [E−s−i+n,i−n+1
n ]s+j.
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Then the module at the left resp. the right is a subquotient of

Hs+i+n(x; H i+n−1
m (M))s+j resp. Hs+i−n(x; H i−n+1

m (M))s+j.

Therefore both of them vanish. But this means that the E2-term coincides with the
corresponding E∞-term. So the target of the spectral sequence Hs(x; M)s+j admits a
finite filtration whose quotients are Hs+i(x; H i

m(M))s+j. Because all of these modules
are finite dimensional vectorspaces it follows that

Hs(x; M)s+j ' ⊕r−s
i=0Hs+i(x; H i

m(M))s+j

for all s ∈ Z.
By the Local Duality theorem there are the following isomorphisms H i

m(M) '
T (Ki

M), 0 ≤ i ≤ d, where T denotes the Matlis duality functor Homk(·, k) in the
case of the graded situation. Therefore we obtain the isomorphisms

Hs+i(x; T (Ki
M))s+j ' (T (Hs+i(x; Ki

M)))s+j ' (Hr−s−i(x; Ki
M)r−s−j)

∨.

But the last vector space is isomorphic to (TorB
r−s−i(k,Ki

M)r−s−j)
∨.

In the case of s > c it is known that r − s < d. Hence the first part of the claim
is shown to be true. In the remaining case s ≤ c the summation is taken from
i = 0, . . . , d, which proves the second part of the claim. �

As an application of 3.12 we derive M. Green’s duality theorem [12, Section 2].

Corollary 3.13. Suppose there exists an integer j ∈ Z such that

Hq
m(M)j−q = Hq

m(M)j+1−q = 0

for all q < dimB M. Then

TorB
s (k,M)s+j ' (TorB

c−s(k,KM)r−s−j)
∨,

for all s ∈ Z, where c = codim M.

Proof. It follows that the assumptions of Theorem 3.12 are satisfied for j because
of Hp

m(M)j−1−p = 0 for all p > dim M. Therefore the isomorphism is a consequence
of (1) and (2) in 3.12. To this end recall that

TorB
s+i(k,H i

m(M))s+j ' Hs+i(x; H i
m(M))s+j = 0,

as follows by the vanishing of H i
m(M)j−i for all i < dim M. �

M. Green’s duality theorem in 3.13 relates the Betti numbers of M to those of
KM . Because of the strong vanishing assumptions in 3.13 very often it does not give
strong information about Betti numbers. Often it says just the vanishing which
follows also by different arguments, e.g., the regularity of M.

Theorem 3.12 is more subtle. We shall illustrate its usefulness by the following
example.
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Example 3.14. Let C ⊂ Pn
K denote a reduced integral non-degenerate curve over an

algebraically closed field K. Suppose that C is non-singular and of genus g(C) = 0.
Let A = B/I denote its coordinate ring, i.e., B = K[x0, . . . , xn] and I its homoge-
neous defining ideal. Then

TorB
s (k,B/I)s+j ' TorB

s+1(k,H1
m(B/I))s+j

for all s ≥ 1 and all j ≥ 3. To this end recall that A is a two-dimensional domain.
Moreover it is well-known that Hq

m(B/I) = 0 for all q ≤ 0 and q > 2. Furthermore
it is easy to see that H1

m(B/I)j−1 = 0 for all j ≤ 1. Moreover H2
m(B/I)j−1−2 = 0 for

all j ≥ 3 as follows because of g(C) = 0. That is, for j ≥ 3 one might apply 3.12.
In order to conclude we have to show that TorB

c−s(k,KB/I)r−s−j = 0 for j ≥ 3. To
this end note that

(Hc−s(x; KB/I)r−s−j)
∨ ' Hs+2(x; H2

m(B/I))s+j

as is shown in the proof of 3.12. But this vanishes for j ≥ 2 as is easily seen.

3.4. The local Green modules. As before let E = EA(A/m) denote the injective
hull of the residue field of a local ring (A, m). Let x = x1, . . . , xr denote a system of
elements of A. Then for all n ∈ Z there are canonical isomorphisms

Hn(x; T (M)) ' T (Hn(x; M)) and Hn(x; T (M)) ' T (Hn(x; M)).

Here T denotes the duality functor HomA(·, E). In the case (A, m) is the factor ring
of a local Gorenstein ring B, then use the modules of deficiency Kn

M as defined in
Section 1.2. In order to continue with our investigations we need a sharpening of the
definition of a filter regular sequence. To this end let M denote a finitely generated
A-module.

An M -filter regular sequence x = x1, . . . , xr is called a strongly M -filter regular
sequence provided it is filter regular with respect to Kn

M⊗ bA for n = 0, 1, . . . , dim M.

Here Â denotes the completion of A.
The necessity to pass to the completion is related to the existence of Kn

M . In the
case A is the quotient of a Gorenstein ring it is enough to check the filter regularity

with respect to Kn
M . This follows because by Cohen’s Structure theorem Â is the

quotient of a Gorenstein ring and x is M -filter regular if and only if it is M⊗AÂ-filter

regular. Because Kn
M⊗ bA are finitely generated Â-modules the existence of strongly

M -filter regular sequences is a consequence of prime avoidance arguments.

Lemma 3.15. Suppose that x = x1, . . . , xr denotes a strongly M-filter regular se-
quence. Let j ∈ Z denote an integer. Then Hi(x; Hj

m(M)) resp. H i(x; Hj
m(M)) are

A-modules of finite length in the following two cases:

a) for all i < r resp. i > 0, and
b) for all i ∈ Z, provided r ≥ j.
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Proof. Without loss of generality we may assume that A is a complete local ring.
Because of the isomorphisms

Hi(x; Hj
m(M)) ' T (H i(x; Kj

M)), i, j ∈ Z,

it will be enough to show that H i(x; Kj
M)) is an A-module of finite length. By view

of 1.17 is follows that this is of finite length in the case i < r. In the case r > i
we know that dim Kj

M ≤ j, see 1.9. Therefore the Koszul cohomology is also of
finite length in the remaining case i = r. The rest of the statement is clear by the
self-duality of the Koszul complex. �

In a certain sense the modules considered in 3.15 are local analogues to the mo-
dules studied by M. Green in [12]. For some results in the graded case see also
[44]. In relation to possible further applications it would be of some interest to find
interpretations of the modules Hi(x; Hj

m(M)). One is given in the following.

Theorem 3.16. Let x = x1, . . . , xr, r ≥ dim M, denote a strongly M-filter regular
sequence. Let n ∈ N be an integer. Then there are the following bounds:

a) LA(Hn(x; M)) ≤
∑n

i≥0 LA(Hn−i(x; H i
m(M))).

b) LA(Hn(x; M)) ≤
∑

i≥0 LA(Hn+i(x; H i
m(M))).

Proof. It is enough to prove one of the statements as follows by self-duality of Koszul
complexes. Let us prove the claim in b). To this end consider the complex

C · := K · ⊗A K·(x; M),

where K · denotes the Čech complex with respect to a generating set of the maximal
ideal. Now consider the spectral sequences for computing the cohomology of C ·.
The first of them is given by

H i
m(Hj(x; M))⇒ H i−j(C ·).

Because Hj(x; M), j ∈ Z, is an A-module of finite length we get the vanishing of
H i

m(Hj(x, M)) = 0 for all j and i 6= 0 and

H0
m(Hj(x; M)) ' Hj(x; M) for all j ∈ Z.

Therefore there is a partial degeneration of the spectral sequence to the following
isomorphisms

H−n(C ·) ' Hn(x; M) for all n ∈ Z.

On the other hand there is the spectral sequence

Ei,−j
2 = Hj(x; H i

m(M))⇒ Ei−j = H i−j(C ·).

By the assumption all the initial terms Ei,−j
2 are A-modules of finite length for all

i, j ∈ Z, see 3.15. Therefore also the limit terms Ei,−j
∞ are of finite length and
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LA(Ei,−j
2 ) ≥ LA(Ei,−j

∞ ) for all i, j ∈ Z. Whence E−n = H−n(C ·) admits a filtration
with quotients Ei,−n−i

∞ for i ∈ Z. Therefore there is the bound

LA(E−n) ≤
∑
i≥0

LA(Ei,−n−i
2 ),

which proves the result by view of the above estimate. �

The spectral sequence considered in the proof provides also another partial de-
generation. This could be helpful for different purposes.

Corollary 3.17. Let x and M be as in 3.16. Then there are the following canonical
isomorphisms:

a) H t(x; M) ' H0(x; H t
m(M)), t = depth M.

b) Hn(x; M) ' Hn−d(x; Hd
m(M)) for all n ∈ Z, provided M is a d-dimensional

Cohen-Macaulay module.

In the first case of Corollary 3.17 it is possible to compute the Koszul cohomology
explicitly. It turns out that H0(x; H t

m(M)) ' (x1, . . . , xt)M :M x/(x1, . . . , xt)M. It
would be of some interest to give further interpretations of some of the modules
Hi(x; Hj

m(M)).
There is one result in this direction concerning multiplicities. To this end recall

the notion of a reducing system of parameters in the sense of M. Auslander and
D. A. Buchsbaum, see [2]. Recall that for an arbitrary system of parameters x =
x1, . . . , xd of M it is known that there is a strongly M -filter regular sequence y =
y1, . . . , yd such that (x1, . . . , xi)M = (y1, . . . , yi)M, i = 1, . . . , d = dim M. Note that
y is a reducing system of parameters of M.

In the following denote by LA(M/xM) resp. e0(x; M) the length resp. the mul-
tiplicity of M with respect to x, see [2] for the details.

Theorem 3.18. Let x = x1, . . . , xd, d = dim M > 1, denote an arbitrary system of
parameters. Choose y = y1, . . . , yd as above. Then

LA(M/xM)− e0(x; M) ≤
d−1∑
i=0

LA(Hi(y
′; H i

m(M))),

where y′ = y1, . . . , yd−1.

Proof. Because of the previous remark one may replace x by y without loss of gen-
erality. Because y is a reducing system of parameters of M it turns out that

LA(M/yM)− e0(y; M) = LA(y′M :M yd/y
′M),
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see [2]. Moreover it follows that y′M :M yd/y
′M ⊆ y′M :M 〈m〉/y′M. Recall that yd

is a parameter for the one-dimensional quotient module M/y′M. But now

y′M :M 〈m〉/y′M ' H0
m(M/y′M).

In order to continue with the proof let K · denote the Čech complex with respect to
a system of parameters of (A, m). Then consider the complex C · := K ·⊗AK·(y

′; M),
where K·(y

′; M) denotes the Koszul complex of M with respect to y′. Then use the
spectral sequence

Ei,−j
2 = H i

m(Hj(y
′; M))⇒ Ei−j = H i−j(C ·).

Because y′ is an M -filter regular sequence Hj(y
′; M), j 6= 0, is an A-module of finite

length. That is, for j 6= 0 it follows that Ei,−j
2 = 0 for all i 6= 0. So there is a partial

degeneration to the isomorphism H0(C ·) ' H0
m(M/y′M). On the other side there is

a spectral sequence

E−i,j
2 = Hj(y

′; H i
m(M))⇒ Ei−j = H i−j(C ·).

Taking into account that E−i,i
2 is of finite length and E−i,i

2 = 0 for i < 0 and i ≥ d
this provides the estimate of the statement. �

In the case that Hn
m(M), n = 0, . . . , d − 1, is an A-module of finite length the

result in 3.18 specializes to the following bound

LA(M/xM)− e0(x; M) ≤
d−1∑
n=0

(
d− 1

i

)
LA(Hn

m(M)).

Therefore 3.18 is a generalization of the ‘classical’ results about Buchsbaum and
generalized Cohen-Macaulay modules to an arbitrary situation.

In this context it is noteworthy to say that there is another bound for the length
LA(M/xM) of the following type

LA(M/xM) ≤
d∑

n=0

LA(Hn(x; Hn
m(M)).

This follows immediately by 3.16 because of M/xM ' H0
m(M/xM). In the particular

case that Hn
m(M), n = 0, . . . , d− 1, are of finite length it implies that

LA(M/xM) ≤
d−1∑
i=0

(
d

i

)
LA(Hn

m(M)) + LA(KM/xKM).

To this end note that Hd(x; Hd
m(M)) ' T (Hd(x; KM)).



LOCAL COHOMOLOGY 55

Moreover in the case of a Cohen-Macaulay module it yields that M/xM '
T (KM/xKM). This implies also the equality of the multiplicities e0(x; M) =
e0(x; KM).

Let us conclude with another application of 3.18.

Corollary 3.19. Let M denote a finitely generated A-module with dimA M −
depthA M ≤ 1. Let x, y, and y′ be as above. Suppose that A is the quotient of a
Gorenstein ring B. Then

LA(M/xM)− e0(x; M) ≤ LA(Kd−1
M /y′Kd−1

M ),

where d = dimA M and Kd−1
M = Extc+1

B (M, B).

Proof. The proof follows by 3.18 because of Hd−1(y
′; Hd−1

m (M)) ' H0(y
′; Kd−1

M ).

Recall that T (Kd−1
M ) ' Hd−1

m (M) by the Local Duality Theorem. �
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