Homework 4

Due Monday February 11, 2008 at the beginning of class.

6. Let R be the regular representation of S_3 over \mathbb{C}. Decompose R into irreducible representations.

Remarks.
1. So, R is the vector space

$$\mathbb{C}(1) \oplus \mathbb{C}(12) \oplus \mathbb{C}(13) \oplus \mathbb{C}(23) \oplus \mathbb{C}(123) \oplus \mathbb{C}(132),$$

and σ in S_3 sends τ in R to $\sigma \tau$ in R.

2. Sometime in the next few days we will establish Corollary 2.18 in Fulton-Harris. This corollary says that each irreducible representation V_i of S_3 appears in R exactly $\dim V_i$ times.

3. We already know all three irreducible representations of S_3. So we already know all of the numerology. I would like to see explicit irreducible submodules of R that add up to R.