
MATH 702 – SPRING 2024
FINAL EXAM.

Write your answers as legibly as you can on the blank sheets of paper provided. Write
complete answers in complete sentences. Make sure that your notation is defined!

Use only one side of each sheet; start each problem on a new sheet of paper; and be
sure to number your pages. Put your solution to problem 1 first, and then your solution to
number 2, etc.

If some problem is incorrect, then give a counterexample and/or supply the missing
hypothesis and prove the resulting statement. If some problem is vague, then be sure to
explain your interpretation of the problem.

You should KEEP this piece of paper.
Take a picture of your exam (for your records) just before you turn the exam in. I will

e-mail your grade and my comments to you. Fold your exam in half before you turn it in.

The exam is worth 50 points. There are four problems.

1. (13 points) Let R be a commutative ring and let M and N be R-modules. Suppose
that every R-submodule of M is finitely generated and every R-submodule of N is
finitely generated. Prove that every R-submodule of M ⊕ N is finitely generated.
(Please give a complete, self-contained proof.)

Let X be an R-submodule of M ⊕N . The set

Y =

{
m ∈M

∣∣∣∣∃n ∈ N with
[
m
n

]
∈ X

}
is a submodule of M . Every submodule of M is finitely generated. Select x1, . . . , xr ∈ X
such that

xi =

[
mi

ni

]
, with mi ∈M, and ni ∈ N

and m1, . . . ,mr generate Y . The set

Z =

{
n ∈ N

∣∣∣∣[0n
]
∈ X

}
is a submodule of N . Every submodule of N is finitely generated; hence there exist

x′1, . . . , x
′
s in X with x′i =

[
0
ni

]
and n1, . . . , ns generate Z.

It follows that x1, . . . , xr, x′1, . . . , x
′
s generate X.
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2 ALGEBRA II

2. (13 points) Let `̀̀ be a field of characteristic zero. Let t1, t2, t3, t4 be new vari-
ables, K be the field of rational functions K = `̀̀(t1, t2, t3, t4) and kkk be the subfield
`̀̀(s1, s2, s3, s4) of K, where the si are the elementary symmetric polynomials:

s1 = t1 + t2 + t3 + t4,

s2 = t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4,

s3 = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4, and

s4 = t1t2t3t4.

(a) Prove that kkk ⊂ K is a Galois extension.
(b) Identify the Galois group AutkkkK.
(c) Identify an element d ∈ K \ kkk with d 2 ∈ kkk.

The symmetric group S4 acts on K by permuting the variables. It is clear that

kkk ⊆ KS4 and S4 ⊆ AutkkkK.

On the other hand, K is the splitting field of

f(x) =
4∏

i=1

(x− ti) = x4 − s1x3 + s2x
2 − s3x+ s4 ∈ kkk[x]

over kkk. Thus, kkk ⊆ K is a Galois extension and AutkkkK ⊆ S4. We conclude that AutkkkK =

S4. (Items (a) and (b) have been established.)
The element d will generate the subfield KA4 of K, which is the unique subfield of K

with dimsubfield K = 12. So we try

d = (t1 − t2)(t1 − t3)(t1 − t4)(t2 − t3)(t2 − t4)(t3 − t4).

We see that σ(d) = −d for each transposition σ ∈ S4; so d ∈ KA4, d /∈ KS4 = kkk, but
d2 ∈ KS4 = kkk.

3. (12 points) Suppose kkk ⊂ E and E ⊆ K are both finite dimensional Galois exten-
sions. Does kkk ⊆ K have to be a Galois extension? Prove or give a counter example.

NO! The extensions Q ⊆ Q[
√
2] and Q[

√
2] ⊆ Q[ 4

√
2] each have dimension two; hence

each extension is Galois. Indeed, Q[
√
2] is the splitting field of x2 − 2 over Q and Q[ 4

√
2]

is the splitting field of x2 =
√
2 over Q[

√
2]. However, the extension Q ⊆ Q[ 4

√
2] is not

Galois because some of the roots of the minimal polynomial of 4
√
2 over Q are not in

Q[ 4
√
2].

4. (12 points) Give an example of a finite dimensional field extension kkk ⊆ K with an
infinite number of intermediate fields. Also give an example of a finite dimensional
field extension kkk ⊆ K with K 6= kkk[u] for any u ∈ K.

Let `̀̀ be an infinite field of characteristic p for some prime integer p. (For example,
`̀̀ could be the field of rational functions in one variable over Z

(p)
.) Let kkk = `̀̀(sp, tp)
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and K = `̀̀(s, t). (In particular, kkk and K are both fields of rational functions in two
variables.) Observe that xp − sp is an irreducible polynomial in kkk[x]. 1 Thus,

dimkkk kkk(s) = p.

In a similar manner, dim`̀̀(s,tp)K = p. We conclude that dimkkkK = p2. We first prove that
K is not equal to kkk(u) for any u in K. Indeed, if u ∈ K, then up ∈ kkk and

dimkkk kkk(u) ≤ p < p2 = dimkkkK.

Observe that for each α ∈ `̀̀, kkk(s+ αt) is a field with

kkk ⊆ kkk(s+ αt) ⊆ K.

Claim. All of the intermediate fields kkk(s + αt) are distinct as α ranges over the infinite
set `̀̀.

To prove the claim, we assume α and β are distinct elements of the field `̀̀ and

kkk(s+ αt) = kkk(s+ βt).

We look for a contradiction. Thus

(α− β)t = (s+ αt)− (s+ βt) ∈ kkk(s+ αt).

But, α − β is a unit of kkk; hence t (and therefore s and K) are in kkk(s + αt). We already
proved that K 6= kkk(u) for any u. We have reached a contradiction. The Claim is
established.

1We made this argument in class. If xp − sp has a non-trivial factor in kkk[x], then g is a non-trivial factor of
xp − sp = (x− s)p in K[x]. In other words, g = (x− s)a is in kkk[x] for some integer a, with 1 ≤ a ≤ p− 1. In
particular, sa ∈ kkk. The exponents a and p are relatively prime, hence s ∈ kkk, which is not true.


