MATH 700
HOMEWORK 4

Due Friday, September 19, 2003 at the beginning of class

Question 1. True or False. If true, prove it; if false, give a counterexample. If \(W_1, W_2, \text{ and } W_3 \) are subspaces of the finite dimensional vector space \(V \), then
\[
\dim (W_1 + W_2 + W_3) = \dim W_1 + \dim W_2 + \dim W_3 - \dim (W_1 \cap W_2) \\
- \dim (W_1 \cap W_3) - \dim (W_2 \cap W_3) + \dim (W_1 \cap W_2 \cap W_3).
\]

Answer. False. Let \(W_1, W_2, \text{ and } W_3 \) be three distinct one-dimensional subspaces of \(\mathbb{R}^2 \). (If you like \(W_1 \) is the \(x \)-axis, \(W_2 \) is the \(y \)-axis, and \(W_3 \) is the line \(y = x \).) All of the intersections \(W_1 \cap W_2, W_1 \cap W_3, W_2 \cap W_3, \text{ and } W_1 \cap W_2 \cap W_3 \) have dimension zero. But \(W_1 + W_2 + W_3 = \mathbb{R}^2 \). It is not true that
\[
2 = 1 + 1 + 1 - 0 - 0 - 0 + 0.
\]

Question 2. Give an example of a non-zero vector space \(V \) and a linear transformation \(T: V \to V \) with the property that the null space of \(T \) is equal to the image of \(T \).

Answer. Let \(V = \mathbb{F}^2 \) and \(T: V \to V \) be \(T(v) = Av \), where \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \). Observe that the null space of \(T \) and the image of \(T \) both equal
\[
\left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} \middle| a \in \mathbb{F} \right\}.
\]

Question 3. Let \(T: V \to V \) be a linear transformation which is not the zero transformation and which is not an isomorphism.

(a) If \(\dim V < \infty \), then prove that there exists a linear transformation \(S: V \to V \) such that \(ST = 0 \), but \(TS \neq 0 \).

Answer. Let \(v_1, \ldots, v_r \) be a basis for the image of \(T \). I know that \(T \) is not onto because of the rank-nullity Theorem. Let \(n \) be the name of the dimension of \(V \). We have \(r < n \). Expand \(v_1, \ldots, v_r \) to become a basis \(v_1, \ldots, v_r, v_{r+1}, \ldots, v_n \) for \(V \). The hypothesis tells us that there is a vector \(w \) with \(T(w) \neq 0 \). Define \(S: V \to V \) by \(S(v_i) = 0 \) for \(1 \leq i \leq n - 1 \) and \(S(v_n) = w \). I see that \(TS \) is not zero because \(TS(v_n) = T(w) \neq 0 \). On the other hand, \(ST = 0 \) because \(S \) sends a basis for the image of \(T \) to zero.
Question 3 b. Does (a) remain true if the hypothesis \(\dim V < \infty \) is removed? (Prove it or give a counterexample.)

Answer. No. Let \(V \) be \(\bigoplus_{i=1}^{\infty} F \). The elements of \(V \) are tuples \((a_1, a_2, \ldots)\) with all but finitely many entries zero. Addition and scalar multiplication take place coordinate-wise. Define \(T: V \to V \) by \(T(a_1, a_2, \ldots) = (a_2, a_3, \ldots) \). We see that \(T \) is not the zero transformation and \(T \) is not an isomorphism (because \((1, 0, 0, 0, \ldots)\) is not zero but is in the null space of \(T \)). On the other hand, \(T \) is onto; hence, if \(S \) is a linear transformation with \(ST = 0 \), then \(S \) must send the entire image of \(T \), which is \(V \), to zero. So \(S \) must be the zero transformation and \(TS \) must be the zero transformation.