Math 700 Homework 3 Solutions

Question 1. Let $T: V \to W$ and $S: W \to V$ be linear transformations of vector spaces. Suppose that the composition ST is the identity map on V.

a. If V and W have the same finite dimension, then prove that T is an isomorphism.

Answer: Let n equal $\dim V = \dim W$. We see that T is one-to-one. Indeed, if $v \in V$ with $T(v) = 0$, then $v = S(T(v)) = S(0) = 0$. It follows that the image of T is an n-dimensional subspace of the n-dimensional vector space W; and therefore, T is onto.

b. Give an example where T is not an isomorphism, but V and W are both finite dimensional.

Answer: Let $V = F$, $W = F^2$, $T(c) = \begin{bmatrix} c \\ 0 \end{bmatrix}$, and $S\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = a$. We see that ST is the identity map, and that T is one-to-one, but not onto.

c. Give an example where T is not an isomorphism, but V and W have the same infinite dimension.

Answer: Let $V = W = \bigoplus_{i=1}^{\infty} F$. (So, the elements of V look like (c_1, c_2, c_3, \ldots), where each $c_i \in F$ and all but finitely many of the c_i are zero.) Let $T(c_1, c_2, c_3, \ldots) = (0, c_1, c_2, c_3, \ldots)$ and $S(c_1, c_2, c_3, \ldots) = (c_2, c_3, \ldots)$. Once again, ST is the identity map, T is one-to-one, but T is not onto.

Question 2. Let V be a vector space over the field F and let $T: V \to V$ be a linear transformation with the property that the composition TT is the identity map on V.

a. Assume that 2 is not the zero element of F. Prove that there are subspaces M and N of V which satisfy the all of the following properties: $M + N = V$, $M \cap N = 0$, $T(\alpha) = \alpha$ for all $\alpha \in M$, and $T(\alpha) = -\alpha$ for all $\alpha \in N$.

Answer: Let $M = \{\alpha \in V \mid T(\alpha) = \alpha\}$. Let $N = \{\alpha \in V \mid T(\alpha) = -\alpha\}$. If $\alpha \in M \cap N$, then $-\alpha = T(\alpha) = \alpha$; hence, $2\alpha = 0$; hence, $\alpha = 0$. If $v \in V$, then $v = \left(\frac{v+T(v)}{2}\right) + \left(\frac{v-T(v)}{2}\right)$. We see that $\frac{v+T(v)}{2} \in M$ and $\frac{v-T(v)}{2} \in N$.

b. Give an example which shows that part (a) is false when F is the field with two elements. NOTE: Write your example up carefully! You must show exactly which property fails.

Answer: Let $V = F^2$ and T be the linear transformation which is given by multiplication by the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. We see that T^2 is the identity map on V.

I claim that there does not exist subspaces M and N of V with $V = M + N$, $M \cap N = 0$, $T(\alpha) = \alpha$ for all $\alpha \in M$, and $T(\alpha) = -\alpha$ for all $\alpha \in N$. Indeed, if such subspaces did exist, then T would have to be the identity map because, if $v \in V$, then there exists elements $m \in M$ and $n \in N$ with $v = m + n$. So, $T(v) = T(m) + T(n) = m - n = m + n = v$, since $1 = -1$ in F. Well, our T is not the identity map because $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which is different than $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
Question 3. Give an example a function $T: \mathbb{C} \to \mathbb{C}$ such that T is a linear transformation when \mathbb{C} is viewed as a vector space over \mathbb{R}, but T is not a linear transformation when \mathbb{C} is viewed as a vector space over \mathbb{C}.

Answer: Consider $T(a + bi) = a - bi$, for $a, b \in \mathbb{R}$. We see that T is a linear transformation over \mathbb{R}:

$$T(a + bi) + T(c + di) = (a - bi) + (c - di) = (a + c) - (b + d)i = T((a + c) + (b + d)i)$$

$$= T([a + bi] + [c + di]),$$

and

$$cT(a + bi) = c(a - bi) = ca - cb = T(ca + cb) = T(c[a + bi]),$$

for all a, b, c in \mathbb{R}. On the other hand, T is not a linear transformation over \mathbb{C} because

$$iT(1) = i \neq -i = T(i \cdot 1).$$