\qquad

Quiz for April 4, 2006

Solve the recurrence relation $a_{n}=2 a_{n-1}+3^{n}$, with initial condition $a_{1}=5$. Check your answer.

ANSWER: We look for a solution of the homogeneous problem $a_{n}=2 a_{n-1}$ of the form $a_{n}=r^{n}$ for some r. We notice that $a_{n}=r^{n}$ is a solution of $a_{n}=2 a_{n-1}$ provided $r^{n}=2 r^{n-1}$, i.e., $r^{n}-2 r^{n-1}=0$, i.e., $r^{n-1}(r-2)=0$. So $r=0$ (and that is not very interesting) or $r=2$. We have found that $a_{n}=c 2^{n}$ is the general solution of the homogeneous problem $a_{n}=2 a_{n-1}$. (Notice that the uninteresting solution $a_{n}=0$ has indeed been included in our general solution.)

Now we look for a particular solution of the given non-homogeneous problem. We try for a solution of the form $a_{n}=A 3^{n}$ for some constant A. Our candidate works if $A 3^{n}=2 A 3^{n-1}+3^{n}$. Our candidate works if $3^{n-1}(A 3-2 A-3)=0$. Our candidate works if $A=3$. At this point we know that the general solution of the original non-homogeneous linear recurrence relation is: $a_{n}=c 2^{n}+3^{n+1}$. We find c to make $a_{1}=5: 5=c 2+9$; so, $c=-2$. Our answer is $a_{n}=-2\left(2^{n}\right)+3^{n+1}$. In other words, our solution is $a_{n}=3^{n+1}-2^{n+1}$. We notice that $a_{1}=3^{2}-2^{2}=5 \checkmark$. Also,

$$
2 a_{n-1}+3^{n}=2\left(3^{n}-2^{n}\right)+3^{n}=3\left(3^{n}\right)-2\left(2^{n}\right)=3^{n+1}-2^{n+1}=a_{n} . \checkmark
$$

