\qquad

Quiz for March 23, 2006

How many integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=21
$$

if each $x_{i} \geq 2$?
ANSWER: Let $y_{i}=x_{i}-2$. The given problem is equivalent to the problem of solving

$$
y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=11
$$

with each y_{i} a non-negative integer. I think of this problem as I have five bins labeled $y_{1}, y_{2}, \ldots, y_{5}$ arranged in a straight line, and an arm full of 11 ones. Each solution to the equation consists of a work order of 11 drops and 4 switches. There are $\binom{15}{4}$ such work orders. I walk to the first bin. If the first instruction is drop, I put a one in the bin, then I read the second instruction. Whenever the instruction says swith, I move to the next bin. I continue until I have dropped all of my ones.

