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Quiz for February 7, 2006

Let fn be the nth Fibonacci number; that is, f1 = 1 , f2 = 1 , and for 3 ≤ n ,
fn = fn−2 + fn−1 . Prove that
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= fnfn+1

whenever n is a positive integer.

ANSWER: We will prove the statement by induction on n .

Base case: If n = 1 , then f2
1 = 1 and fnfn+1 = 1 ; so the statement holds.

Induction Hypothesis: Suppose the statement holds at n − 1 . In other words,
suppose that
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n−1 = fn−1fn.

Inductive Step: We must show that the statement holds at n . That is, we must
show that:
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holds. Well,
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We use the Induction Hypothesis to see that
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= fn−1fn + f2
n

= fn(fn−1 + fn).

We use the definition of the Fibonacci numbers to see that fn−1 + fn = fn+1 . We
conclude that
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= fnfn+1.

The inductive step is complete, and so is the proof.


