\qquad

Quiz for February 7, 2006

Let f_{n} be the $n^{\text {th }}$ Fibonacci number; that is, $f_{1}=1, f_{2}=1$, and for $3 \leq n$, $f_{n}=f_{n-2}+f_{n-1}$. Prove that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

whenever n is a positive integer.
ANSWER: We will prove the statement by induction on n.
Base case: If $n=1$, then $f_{1}^{2}=1$ and $f_{n} f_{n+1}=1$; so the statement holds.
Induction Hypothesis: Suppose the statement holds at $n-1$. In other words, suppose that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n-1}^{2}=f_{n-1} f_{n}
$$

Inductive Step: We must show that the statement holds at n. That is, we must show that:

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

holds. Well,

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=\left(f_{1}^{2}+f_{2}^{2}+\cdots+f_{n-1}^{2}\right)+f_{n}^{2}
$$

We use the Induction Hypothesis to see that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n-1} f_{n}+f_{n}^{2}=f_{n}\left(f_{n-1}+f_{n}\right)
$$

We use the definition of the Fibonacci numbers to see that $f_{n-1}+f_{n}=f_{n+1}$. We conclude that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

The inductive step is complete, and so is the proof.

