PRINT Your Name:

Quiz for February 2, 2006

Let S be a set of n+1 integers between 1 and 2n. Prove that at least one integer from S divides another integer from S.

ANSWER: We will prove the statement by induction on n.

Base case: If n = 1, then S consists of two numbers from $\{1, 2\}$; so, $S = \{1, 2\}$ and one of the integers from S (namely 1) does indeed the other integer from S (namely 2).

Inductive step: Let n be some fixed integer with $2 \le n$. We suppose that the statement holds for n-1. We prove that the statement holds at n.

We finish the argument by contradiction. Suppose that there exists a counter example to the statement at n. That is, suppose that S consists of $s_1 < \cdots < s_{n+1}$, with $1 \leq s_1$ and $s_{n+1} \leq 2n$; but s_i does not divide s_j for any i < j. We will produce a counter example to the statement at n-1.

If $s_n \leq 2(n-1)$, then $\{s_1, \ldots, s_n\}$ is a counter example to the statement at n-1. The induction hypothesis tells us that the statement holds at n-1; so we know that

$$2n - 1 \le s_n < s_{n+1} \le 2n.$$

Thus, we know that

$$2n - 1 = s_n$$
 and $2n = s_{n+1}$.

If $i \leq n-1$, then s_i does not divide $s_{n+1} = 2n$. Thus, none of the numbers s_1, \ldots, s_{n-1} is equal to n and none of these numbers divide n. Furthermore, all of the numbers s_1, \ldots, s_{n-1} are less than 2n so n does not divide any of these numbers. We see that the set of numbers

$$T = \{s_1, \dots, s_{n-1}\} \cup \{n\}$$

is a counter example to the statement at n-1. (In other words, T is a set of (n-1)+1 numbers between 1 and 2(n-1) and none of the numbers in T divide any of the other numbers in T.) The existence of T contradicts the Inductive hypothesis. This is a contradiction. Our supposition (that there exists a counter example to the statement at n) must be false. In other words, if the original statement holds at n-1, then the original statement also holds at n. The proof of the inductive step is complete; and therefore, the proof is complete.