\qquad

Quiz for February 2, 2006

Let S be a set of $n+1$ integers between 1 and $2 n$. Prove that at least one integer from S divides another integer from S.

ANSWER: We will prove the statement by induction on n.
Base case: If $n=1$, then S consists of two numbers from $\{1,2\}$; so, $S=\{1,2\}$ and one of the integers from S (namely 1) does indeed the other integer from S (namely 2).

Inductive step: Let n be some fixed integer with $2 \leq n$. We suppose that the statement holds for $n-1$. We prove that the statement holds at n.

We finish the argument by contradiction. Suppose that there exists a counter example to the statement at n. That is, suppose that S consists of $s_{1}<\cdots<s_{n+1}$, with $1 \leq s_{1}$ and $s_{n+1} \leq 2 n$; but s_{i} does not divide s_{j} for any $i<j$. We will produce a counter example to the statement at $n-1$.

If $s_{n} \leq 2(n-1)$, then $\left\{s_{1}, \ldots, s_{n}\right\}$ is a counter example to the statement at $n-1$. The induction hypothesis tells us that the statement holds at $n-1$; so we know that

$$
2 n-1 \leq s_{n}<s_{n+1} \leq 2 n
$$

Thus, we know that

$$
2 n-1=s_{n} \quad \text { and } \quad 2 n=s_{n+1} .
$$

If $i \leq n-1$, then s_{i} does not divide $s_{n+1}=2 n$. Thus, none of the numbers s_{1}, \ldots, s_{n-1} is equal to n and none of these numbers divide n. Furthermore, all of the numbers s_{1}, \ldots, s_{n-1} are less than $2 n$ so n does not divide any of these numbers. We see that the set of numbers

$$
T=\left\{s_{1}, \ldots, s_{n-1}\right\} \cup\{n\}
$$

is a counter example to the statement at $n-1$. (In other words, T is a set of $(n-1)+1$ numbers between 1 and $2(n-1)$ and none of the numbers in T divide any of the other numbers in T.) The existence of T contradicts the Inductive hypothesis. This is a contradiction. Our supposition (that there exists a counter example to the statement at n) must be false. In other words, if the original statement holds at $n-1$, then the original statement also holds at n. The proof of the inductive step is complete; and therefore, the proof is complete.

