Goldbach’s conjecture states that every even integer greater than 2 is the sum of two primes. Prove that Goldbach’s conjecture is equivalent to the statement that every integer greater than 5 is the sum of three primes.

ANSWER:

Assume the original conjecture. Prove the alternate form. Let \(n \) be an integer greater than 5. If \(n \) is even, then \(n - 2 \) is an even integer greater than 2 and Goldbach’s conjecture ensures that there exist prime numbers \(p \) and \(q \) with \(p + q = n - 2 \). Thus, \(p + q + 2 = n \) and the conclusion of the alternate form holds for \(n \). If \(n \) is odd, then \(n - 3 \) is an even integer greater than 2. Once again Goldbach’s conjecture ensures that there exist prime numbers \(p \) and \(q \) with \(p + q = n - 3 \). Thus, \(p + q + 3 = n \). In any event, \(n \) is the sum of three primes.

Assume the alternate form. Prove the original conjecture. Let \(n > 2 \) be an even integer. We see that \(n + 2 \) is an arbitrary integer greater than 5. The alternate form of the conjecture ensures that there exist prime numbers \(p \), \(q \), and \(r \) with \(n + 2 = p + q + r \). We notice that at least one of the numbers \(p \), \(q \), and \(r \) must be even (because three odd numbers add up to an odd number and \(n + 2 \) is even). The only even prime number is 2. So one of the three prime numbers \(p \), \(q \) or \(r \) is equal to 2. Re-label, if necessary, in order to have \(r = 2 \). We now subtract 2 from each side of \(n + 2 = p + q + 2 \) to see that \(n = p + q \).