Math 574, Exam 3, Summer 2007
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

Please leave room in the upper left corner for the staple.
There are 5 problems. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

You should KEEP this copy of your exam.
I will post the solutions on my website sometime after 3:15 today.

1. (7 points) How many monomials of degree less than or equal to d are there in n variables. (Recall that the monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ has degree equal to $\left.e_{1}+e_{2}+\cdots+e_{n}.\right)$

This problem is the same as counting the number of monomials of degree exactly d in $n+1$ variables and this is the same as the number of work orders with d picks and n switches:

$$
\binom{n+d}{d} .
$$

2. (7 points) A candy store has three flavors: chocolate, vanilla, and strawberry. Every bag of candy contains 10 pieces of candy all together and at least 3 pieces of chocolate candy. How many possible bags of candy can be made?

Put 3 pieces of Chocolate candy in the bag. Now use work orders with 7 picks and 2 switches to fill the bag:

$$
\binom{9}{2} .
$$

3. (7 points) Twenty people have formed a club. The club has four committees: The Steering Committee has 5 people, the Issues Committee has 2 people, the Fund Raising Committee has 3 people, and the Entertainment Committee has 10 people. How many ways can the committee assignments be distributed, if every person lands on exactly one committee?

$\binom{20}{5,2,3,10}$.

4. (7 points) Find a recurrence relation which counts the number of strings of length n which are made out of 0 's and 1 's and contain at least 3 consecutive zeros.

Let a_{n} equal the number of strings of length n which can be made from 0 's and 1 's and which contain at least 3 consecutive zeros.

We look how a given string ends. We count a_{n-1} strings that end in $1 ; a_{n-2}$ strings that end in $10, a_{n-3}$ strings that end in 100 ; and 2^{n-3} strings that end in 000 . Every legal string has been counted exactly once:

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+2^{n-3} .
$$

5. (22 points) Find the general solution of recurrence relation

$$
\begin{equation*}
a_{n}=5 a_{n-1}-8 a_{n-2}+4 a_{n-3}+2^{n} . \tag{NHP}
\end{equation*}
$$

We first solve the homogeneous problem. We look for r so that $a_{n}=r^{n}$ is a solution of

$$
\begin{equation*}
a_{n}=5 a_{n-1}-8 a_{n-2}+4 a_{n-3} . \tag{HP}
\end{equation*}
$$

We look for r with

$$
r^{n}=5 r^{n-1}-8 r^{n-2}+4 r^{n-3}
$$

Move all the terms to one side and factor out the r^{n-3}. We want to solve

$$
r^{n-3}\left(r^{3}-5 r^{2}+8 r-4\right)=0
$$

Factor to get

$$
r^{n-3}(r-1)(r-2)^{2}=0 .
$$

The general solution of the homogeneous problem is

$$
a_{n}=\alpha_{1}+\alpha_{2} 2^{n}+\alpha_{3} n 2^{n} .
$$

Now we look for a particular solution of the original non-homogeneous problem. We look for a constant β for which $a_{n}=\beta n^{2} 2^{n}$ is a solution of (NHP). We look for β with

$$
\begin{gathered}
\beta n^{2} 2^{n}=5 \beta(n-1)^{2} 2^{n-1}-8 \beta(n-2)^{2} 2^{n-2}+4 \beta(n-3)^{2} 2^{n-3}+2^{n} \\
\beta n^{2} 2^{n}=5 \beta\left(n^{2}-2 n+1\right) 2^{n-1}-8 \beta\left(n^{2}-4 n+4\right) 2^{n-2}+4 \beta\left(n^{2}-6 n+9\right) 2^{n-3}+2^{n} .
\end{gathered}
$$

Divide both sides by 2^{n-3} :

$$
\beta n^{2} 8=5 \beta\left(n^{2}-2 n+1\right) 4-8 \beta\left(n^{2}-4 n+4\right) 2+4 \beta\left(n^{2}-6 n+9\right)+8
$$

The n^{2} terms cancel because $8=20-16+4$. We solve:

$$
0=20 \beta(-2 n+1)-16 \beta(-4 n+4)+4 \beta(-6 n+9)+8 .
$$

The n terms cancel because $-40+64-24=0$. We solve

$$
0=20 \beta(1)-16 \beta(4)+4 \beta(9)+8=\beta(20-64+36)+8=-8 \beta+8
$$

So $\beta=1$ and the general solution of (NHP) is

$$
a_{n}=\alpha_{1}+\alpha_{2} 2^{n}+\alpha_{3} n 2^{n}+n^{2} 2^{n} .
$$

