Math 574, Final Exam, Spring 2006

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problems 1 through 10 are worth 9 points each. Problem 11 is worth 10 points. The exam is worth 100 points.

YOU MUST JUSTIFY YOUR ANSWERS. Write in complete sentences. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website a few hours after the exam is finished.

1. Express the sum $\sum_{k=0}^{n}\binom{n}{k}$ in a closed form.
2.

(a) Consider the list of numbers

$$
\begin{array}{rllll}
a_{1}=4, \quad a_{2}=6, & a_{3}=2, & a_{4}=8, & a_{5}=10, & a_{6}=1, \quad a_{7}=5, \\
& a_{8}=9, & a_{9}=7, & a_{10}=3 .
\end{array}
$$

For each integer i with $1 \leq i \leq 10$, let u_{i} be the length of the longest increasing sequence from the above list which starts at a_{i}, and let d_{i} be the length of the longest decreasing sequence from the above list which starts at a_{i}. Write down the value of $\left(u_{i}, d_{i}\right)$ for each i.
(b) Let a_{1}, \ldots, a_{10} be any list of 10 distinct numbers. Define $\left(u_{i}, d_{i}\right)$ as in part (a). Prove that if $i<j$, then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.
(c) Prove that every list a_{1}, \ldots, a_{10} of 10 distinct numbers must contain an increasing sublist of length 4 or a decreasing sublist of length 4 .
(d) Give an example of a list a_{1}, \ldots, a_{9} of 9 distinct numbers which does not contain an increasing sublist of length 4 or a decreasing sublist of length 4.
3.
(a) What is the truth table for $p \rightarrow q$?
(b) What is the converse of $p \rightarrow q$?
(c) What is the contrapositive of $p \rightarrow q$?
(d) Is the converse of $p \rightarrow q$ logically equivalent to $p \rightarrow q$?
(e) Is the contrapositive of $p \rightarrow q$ logically equivalent to $p \rightarrow q$?
(f) Express $p \rightarrow q$ in a logically equivalent manner using only \wedge, \vee, and "not".
4. Let I be the following interval of real numbers: $I=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$. For each real number x in I, let S_{x} be the following set of real numbers:

$$
S_{x}=\left\{y \in \mathbb{R} \left\lvert\, x-\frac{3}{4}<y<x+\frac{3}{4}\right.\right\} .
$$

(a) Find $\bigcup_{x \in I} S_{x}$.
(b) Find $\bigcap_{x \in I} S_{x}$.
5. How many words of length 20 can be made from the alphabet $\{0,1,2,3\}$ if exactly 10 zeros are used?
6. Prove that every integer greater than 11 is the sum of 2 composite numbers.
7. Let S, T, and U be sets, and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. Suppose that $g \circ f$ is onto. For each question, prove or give a counterexample.
(a) Does f have to be onto?
(b) Does g have to be onto?
8. Recall that the Fibonacci numbers are: $f_{1}=1, f_{2}=1$, and for each integer n with $n \geq 3, f_{n}=f_{n-1}+f_{n-2}$. Prove that $f_{4 n}$ is a multiple of 3 , whenever n is a positive integer.
9. How many monomials of degree less than or equal to d can be made using the n variables x_{1}, \ldots, x_{n} ? (For example, $x_{1}^{2} x_{2}^{3}$ is a monomial of degree 5.)
10. Find a recurrence relation for the number of strings made from 0 's, 1 's, and 2 's that do not contain two consecutive zeros or two consecutive ones.
11. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+2^{n}$ with $a_{0}=1$ and $a_{1}=7$. CHECK your answer.

