Math 574, Final Exam, Spring 2006 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problems 1 through 10 are worth 9 points each. Problem 11 is worth 10 points. The exam is worth 100 points.

YOU MUST JUSTIFY YOUR ANSWERS. Write in complete sentences. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Express the sum $\sum_{k=0}^{n}\binom{n}{k}$ in a closed form.

The sum is equal to 2^{n}. You can see this by using the binomial theorem $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n} y^{n}$. Let $x=y=1$ to see that $2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}$. You can also see the answer because there are $\binom{n}{k}$ subsets of size k in an n element set. So, the given sum counts the number of subsets of an n element set. On the other hand, we know that there are 2^{n} subsets of an n element set.
2.
(a) Consider the list of numbers

$$
\begin{gathered}
a_{1}=4, \quad a_{2}=6, \quad a_{3}=2, \quad a_{4}=8, \quad a_{5}=10, \quad a_{6}=1, \quad a_{7}=5, \\
a_{8}=9, \quad a_{9}=7, \quad a_{10}=3 .
\end{gathered}
$$

For each integer i with $1 \leq i \leq 10$, let u_{i} be the length of the longest increasing sequence from the above list which starts at a_{i}, and let d_{i} be the length of the longest decreasing sequence from the above list which starts at a_{i}. Write down the value of $\left(u_{i}, d_{i}\right)$ for each i.

i	$\left(u_{i}, d_{i}\right)$
1	$(4,3)$
2	$(3,3)$
3	$(3,2)$
4	$(2,3)$
5	$(1,4)$
6	$(3,1)$
7	$(2,2)$
8	$(1,3)$
9	$(1,2)$
10	$(1,1)$

(b) Let a_{1}, \ldots, a_{10} be any list of 10 distinct numbers. Define $\left(u_{i}, d_{i}\right)$ as in part (a). Prove that if $i<j$, then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.

There are two possibilities. Either $a_{i}<a_{j}$ or $a_{i}>a_{j}$. If $a_{i}<a_{j}$, then every increasing list which starts at a_{j} can be extended to become an increasing list which starts at a_{i}. Thus, $u_{i} \geq u_{j}+1$. On the other hand, if $a_{i}>a_{j}$, then every decreasing list which starts at a_{j} can be extended to become an decreasing list which starts at a_{i}. Thus, $d_{i} \geq d_{j}+1$.
(c) Prove that every list a_{1}, \ldots, a_{10} of 10 distinct numbers must contain an increasing sublist of length 4 or a decreasing sublist of length 4.

There are only 9 distinct pairs $\left(u_{i}, d_{i}\right)$ made with $1 \leq i \leq u_{i}, d_{i} \leq 3$; but there are 10 parameters i with $1 \leq i \leq 10$. It follows that some u_{i} or some d_{i} must be at least 4 .
(d) Give an example of a list a_{1}, \ldots, a_{9} of 9 distinct numbers which does not contain an increasing sublist of length 4 or a decreasing sublist of length 4.

$$
3,2,1,6,5,4,9,8,7 .
$$

It is easy to see that the pairs $\left(u_{i}, d_{i}\right)$ are

$$
(3,3),(3,2),(3,1),(2,3),(2,2),(2,1),(1,3),(1,2),(1,1) .
$$

3.

(a) What is the truth table for $p \rightarrow q$?

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

(b) What is the converse of $p \rightarrow q$?
$q \rightarrow p$
(c) What is the contrapositive of $p \rightarrow q$?
not $q \rightarrow \operatorname{not} p$
(d) Is the converse of $p \rightarrow q$ logically equivalent to $p \rightarrow q$?

NO.

p	q	$q \rightarrow p$
T	T	T
T	F	T
F	T	F
F	F	T

Observe that the two boxed entries are different than the corresponding entries for $p \rightarrow q$.
(e) Is the contrapositive of $p \rightarrow q$ logically equivalent to $p \rightarrow q$?

YES.

p	q	not q	not p	not $q \rightarrow \operatorname{not} p$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

The statements not $q \rightarrow$ not p and $p \rightarrow q$ take exactly the same truth values for all values of p and q.
(f) Express $p \rightarrow q$ in a logically equivalent manner using only \wedge, \vee, and "not".
$p \rightarrow q$ is equivalent to $q \vee$ not p because $p \rightarrow q$ and $q \vee$ not p take exactly the same truth values for all values of p and q.

p	q	not p	$q \vee \operatorname{not} p$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

4. Let I be the following interval of real numbers: $I=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$. For each real number x in I, let S_{x} be the following set of real numbers:

$$
S_{x}=\left\{y \in \mathbb{R} \left\lvert\, x-\frac{3}{4}<y<x+\frac{3}{4}\right.\right\} .
$$

(a) Find $\bigcup_{x \in I} S_{x}$.
$\left\{y \in \mathbb{R} \left\lvert\,-\frac{3}{4}<y<1+\frac{3}{4}\right.\right\}$.
(b) Find $\bigcap_{x \in I} S_{x}$.
$\left\{y \in \mathbb{R} \left\lvert\, \frac{1}{4}<y<\frac{3}{4}\right.\right\}$.
5. How many words of length 20 can be made from the alphabet $\{0,1,2,3\}$ if exactly 10 zeros are used?
Select the 10 places to put zero. There are $\binom{20}{10}$ ways to do this. Now fill in the rest of the spots. There are 3^{10} ways to do this. The answer is

$$
\begin{array}{|l|}
\hline 3^{10}\binom{20}{10} . \\
\hline
\end{array}
$$

6. Prove that every integer greater than 11 is the sum of 2 composite numbers.

If n is even, then $n=4+(n-4)$. It is clear that 4 is a composite integer. On the other hand $n-4$ is an even integer which is more than 2 , so $n-4$ is also a composite integer. If n is odd, then $n=9+(n-9)$. It is clear that 9 is a composite integer. On the other hand, $n-9$ is an even integer which is greater than 2 , so $n-9$ is a composite integer. In any event, n is the sum of two composite integers.
7. Let S, T, and U be sets, and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. Suppose that $g \circ f$ is onto. For each question, prove or give a counterexample.
(a) Does f have to be onto?

The function f does NOT have to be onto. Consider $S=U=\{1\}, T=\{1,2\}$, $f(1)=1, g(1)=g(2)=1$. We see that $g \circ f$ is onto, but f is not onto.
(b) Does g have to be onto?

The function g DOES have to be onto. Let u be an arbitrary element of U. The function $g \circ f$ is onto; so, there exists an element $s \in S$ with $g \circ f(s)=u$. Thus $f(s)$ is an element of T and g sends THIS element of T to u.
8. Recall that the Fibonacci numbers are: $f_{1}=1, f_{2}=1$, and for each integer n with $n \geq 3, f_{n}=f_{n-1}+f_{n-2}$. Prove that $f_{4 n}$ is a multiple of 3 , whenever n is a positive integer.

The Fibonacci numbers are $f_{1}=1, f_{2}=1, f_{3}=2$, and $f_{4}=3$. We see that $f_{4 \cdot 1}$ is a multiple of 3 and this takes care of the base case. We continue by induction.

INDUCTIVE HYPOTHESIS: Assume that $f_{4 n}=3 \ell$ for some fixed positive integers n and ℓ.

WE WILL PROVE: $f_{4 n+4}$ is also a multiple of 3 .
We see that

$$
f_{4 n+4}=f_{4 n+3}+f_{4 n+2}=2 f_{4 n+2}+f_{4 n+1}=3 f_{4 n+1}+2 f_{4 n}=3\left(f_{4 n+1}+2 \ell\right) .
$$

We have shown that the inductive hypothesis ensures that $f_{4 n+4}$ is a multiple of 3 , and our proof is complete.
9. How many monomials of degree less than or equal to d can be made using the n variables x_{1}, \ldots, x_{n} ? (For example, $x_{1}^{2} x_{2}^{3}$ is a monomial of degree 5.)

We count all monomials of the form $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$. We must count the number of solutions of $e_{1}+e_{2}+\cdots+e_{n} \leq d$, where each e_{i} is a non-negative integer. This is the same as the number of solutions of $e_{1}+e_{2}+\cdots+e_{n}+e_{n+1}=d$, where each e_{i} is a non-negative integer. This is the Candy Store Problem with d picks and n switches. So, there are

$$
\binom{d+n}{n}
$$

monomials of degree less than or equal to d can be made using the n variables x_{1}, \ldots, x_{n}.
10. Find a recurrence relation for the number of strings made from 0 's, 1 's, and 2 's that do not contain two consecutive zeros or two consecutive ones.

Let a_{n} equal the number of strings made from 0 's, 1 's, and 2 's that do not contain two consecutive zeros or two consecutive ones. I see that $a_{1}=3$ and $a_{2}=7$. I notice that the number of legal strings with right-most two in position m is

$$
\begin{cases}a_{m-1} & \text { if } m=n \\ 2 a_{m-1} & \text { if } m<n\end{cases}
$$

because once I put 0 or 1 in position $m+1$, then the rest of the string is completely determined. I now see that if $n \geq 2$, then

$$
a_{n}=a_{n-1}+2 a_{n-2}+\cdots+2 a_{1}+2^{\dagger}+2^{\ddagger}
$$

The number 2^{\dagger} counts all strings with right most two in position 1 . The number 2^{\ddagger} counts all strings without any twos. The above formula is not really a recurrence relation, so we clean it up a little. Observe that a_{n-1} is almost the same as a_{n}; that is,

$$
a_{n-1}=a_{n-2}+2 a_{n-3}+\cdots+2 a_{1}+2^{\dagger}+2^{\ddagger} .
$$

In other words, $a_{n-1}+\left(a_{n-1}+a_{n-2}\right)=a_{n}$. Our answer is

$$
a_{n}=2 a_{n-1}+a_{n-2}, \quad a_{0}=1, \quad a_{1}=3
$$

A good way to check this recurrence relation is to notice that a_{2} really is 7 and a_{3} really is 17 .

11. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+2^{n}$ with $a_{0}=1$ and $a_{1}=7$. CHECK your answer.

The characteristic polynomial $x^{2}-4 x+4=(x-2)^{2}$; so we know that the general solution of the homogeneous problem is $a_{n}=c_{1} 2^{n}+c_{2} n 2^{n}$. We look for a particular solution of the given nonhomogeneous problem of the form $a_{n}=A n^{2} 2^{n}$. We see that $A=\frac{1}{2}$ works. So, the general solution of the given non-homogeneous problem is

$$
a_{n}=c_{1} 2^{n}+c_{2} n 2^{n}+n^{2} 2^{n-1}
$$

We need to find c_{1} and c_{2} with

$$
1=a_{0}=c_{1} \quad \text { and } \quad 7=a_{1}=2 c_{1}+2 c_{2}+1
$$

So $c_{1}=1$ and $c_{2}=2$. Our solution is

$$
a_{n}=2^{n}+n 2^{n+1}+n^{2} 2^{n-1}
$$

We see that $a_{0}=1, a_{1}=2+4+1=7$, and

$$
\begin{aligned}
& 4 a_{n-1}-4 a_{n-2}+2^{n}=\left\{\begin{array}{l}
4\left(2^{n-1}+(n-1) 2^{n}+(n-1)^{2} 2^{n-2}\right) \\
-4\left(2^{n-2}+(n-2) 2^{n-1}+(n-2)^{2} 2^{n-3}\right) \\
+2^{n}
\end{array}\right. \\
& =\left\{\begin{array}{l}
4\left(2^{n-1}+n 2^{n}-2^{n}+n^{2} 2^{n-2}-2 n 2^{n-2}+2^{n-2}\right) \\
-4\left(2^{n-2}+n 2^{n-1}-(2) 2^{n-1}+n^{2} 2^{n-3}-4 n 2^{n-3}+(4) 2^{n-3}\right) \\
+2^{n}
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
=\left\{\begin{array}{l}
(2) 2^{n}+2 n 2^{n+1}-(4) 2^{n}+2 n^{2} 2^{n-1}-n 2^{n+1}+2^{n} \\
-2^{n}-n 2^{n+1}+(4) 2^{n}-n^{2} 2^{n-1}+n 2^{n+1}-(2) 2^{n} \\
+2^{n}
\end{array}\right. \\
=\left\{\begin{array}{l}
(2) 2^{n}-(4) 2^{n}+2^{n}-2^{n}+(4) 2^{n}-(2) 2^{n}+2^{n} \\
+2 n 2^{n+1}-n 2^{n+1}-n 2^{n+1}+n 2^{n+1} \\
+2 n^{2} 2^{n-1}-n^{2} 2^{n-1}
\end{array}\right. \\
=2^{n}+n 2^{n+1}+n^{2} 2^{n-1}=a_{n} .
\end{gathered}
$$

