
Math 574, Final Exam, Spring 2006 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc.; although, by using
enough paper, you can do the problems in any order that suits you.

There are 11 problems. Problems 1 through 10 are worth 9 points each. Problem
11 is worth 10 points. The exam is worth 100 points.

YOU MUST JUSTIFY YOUR ANSWERS. Write in complete sentences.
No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Express the sum

n
∑

k=0

(

n

k

)

in a closed form.

The sum is equal to 2n . You can see this by using the binomial theorem

(x + y)n =
n
∑

k=0

(

n
k

)

xnyn . Let x = y = 1 to see that 2n = (1 + 1)n =
n
∑

k=0

(

n
k

)

. You

can also see the answer because there are
(

n

k

)

subsets of size k in an n element
set. So, the given sum counts the number of subsets of an n element set. On the
other hand, we know that there are 2n subsets of an n element set.

2.

(a) Consider the list of numbers

a1 = 4, a2 = 6, a3 = 2, a4 = 8, a5 = 10, a6 = 1, a7 = 5,

a8 = 9, a9 = 7, a10 = 3.

For each integer i with 1 ≤ i ≤ 10 , let ui be the length of the
longest increasing sequence from the above list which starts at ai ,
and let di be the length of the longest decreasing sequence from
the above list which starts at ai . Write down the value of (ui, di)
for each i .
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i (ui, di)
1 (4, 3)
2 (3, 3)
3 (3, 2)
4 (2, 3)
5 (1, 4)
6 (3, 1)
7 (2, 2)
8 (1, 3)
9 (1, 2)
10 (1, 1)

(b) Let a1, . . . , a10 be any list of 10 distinct numbers. Define (ui, di)
as in part (a). Prove that if i < j , then (ui, di) 6= (uj, dj) .

There are two possibilities. Either ai < aj or ai > aj . If ai < aj , then every
increasing list which starts at aj can be extended to become an increasing list
which starts at ai . Thus, ui ≥ uj + 1 . On the other hand, if ai > aj , then every
decreasing list which starts at aj can be extended to become an decreasing list
which starts at ai . Thus, di ≥ dj + 1 .

(c) Prove that every list a1, . . . , a10 of 10 distinct numbers must
contain an increasing sublist of length 4 or a decreasing sublist of
length 4 .

There are only 9 distinct pairs (ui, di) made with 1 ≤ i ≤ ui, di ≤ 3 ; but there
are 10 parameters i with 1 ≤ i ≤ 10 . It follows that some ui or some di must
be at least 4 .

(d) Give an example of a list a1, . . . , a9 of 9 distinct numbers which
does not contain an increasing sublist of length 4 or a decreasing
sublist of length 4 .

3, 2, 1, 6, 5, 4, 9, 8, 7 .

It is easy to see that the pairs (ui, di) are

(3, 3), (3, 2), (3, 1), (2, 3), (2, 2), (2, 1), (1, 3), (1, 2), (1, 1).

3.
(a) What is the truth table for p → q ?

p q p → q

T T T

T F F

F T T

F F T
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(b) What is the converse of p → q ?

q → p

(c) What is the contrapositive of p → q ?

not q → not p

(d) Is the converse of p → q logically equivalent to p → q ?

NO.
p q q → p

T T T

T F T

F T F

F F T

Observe that the two boxed entries are different than the corresponding entries for
p → q .

(e) Is the contrapositive of p → q logically equivalent to p → q ?

YES.
p q not q not p not q → not p

T T F F T

T F T F F

F T F T T

F F T T T

The statements not q → not p and p → q take exactly the same truth values for
all values of p and q .

(f) Express p → q in a logically equivalent manner using only ∧ , ∨ ,
and “not”.

p → q is equivalent to q ∨ not p because p → q and q ∨ not p take exactly the

same truth values for all values of p and q .

p q not p q ∨ not p

T T F T

T F F F

F T T T

F F T T
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4. Let I be the following interval of real numbers: I = {x ∈ R | 0 ≤ x ≤ 1} .
For each real number x in I , let Sx be the following set of real
numbers:

Sx = {y ∈ R | x − 3

4
< y < x + 3

4
}.

(a) Find
⋃

x∈I

Sx .

{y ∈ R | − 3

4
< y < 1 + 3

4
}.

(b) Find
⋂

x∈I

Sx .

{y ∈ R | 1

4
< y < 3

4
}.

5. How many words of length 20 can be made from the alphabet
{0, 1, 2, 3} if exactly 10 zeros are used?

Select the 10 places to put zero. There are
(

20

10

)

ways to do this. Now fill in the

rest of the spots. There are 310 ways to do this. The answer is

310

(

20

10

)

.

6. Prove that every integer greater than 11 is the sum of 2 composite
numbers.

If n is even, then n = 4 + (n − 4) . It is clear that 4 is a composite integer. On
the other hand n − 4 is an even integer which is more than 2 , so n − 4 is also
a composite integer. If n is odd, then n = 9 + (n − 9) . It is clear that 9 is a
composite integer. On the other hand, n − 9 is an even integer which is greater
than 2 , so n − 9 is a composite integer. In any event, n is the sum of two
composite integers.

7. Let S , T , and U be sets, and let f : S → T and g : T → U be
functions. Suppose that g ◦ f is onto. For each question, prove or give
a counterexample.
(a) Does f have to be onto?

The function f does NOT have to be onto. Consider S = U = {1} , T = {1, 2} ,
f(1) = 1 , g(1) = g(2) = 1 . We see that g ◦ f is onto, but f is not onto.

(b) Does g have to be onto?

The function g DOES have to be onto. Let u be an arbitrary element of U . The
function g ◦ f is onto; so, there exists an element s ∈ S with g ◦ f(s) = u . Thus
f(s) is an element of T and g sends THIS element of T to u .
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8. Recall that the Fibonacci numbers are: f1 = 1 , f2 = 1 , and for each
integer n with n ≥ 3 , fn = fn−1 + fn−2 . Prove that f4n is a multiple
of 3 , whenever n is a positive integer.

The Fibonacci numbers are f1 = 1 , f2 = 1 , f3 = 2 , and f4 = 3 . We see that f4·1

is a multiple of 3 and this takes care of the base case. We continue by induction.

INDUCTIVE HYPOTHESIS: Assume that f4n = 3` for some fixed positive
integers n and ` .

WE WILL PROVE: f4n+4 is also a multiple of 3 .

We see that

f4n+4 = f4n+3 + f4n+2 = 2f4n+2 + f4n+1 = 3f4n+1 + 2f4n = 3(f4n+1 + 2`).

We have shown that the inductive hypothesis ensures that f4n+4 is a multiple of
3 , and our proof is complete.

9. How many monomials of degree less than or equal to d can be made
using the n variables x1, . . . , xn ? (For example, x2

1x
3
2 is a monomial

of degree 5 .)

We count all monomials of the form xe1

1 xe2

2 · · ·xen

n . We must count the number of
solutions of e1 + e2 + · · ·+ en ≤ d , where each ei is a non-negative integer. This
is the same as the number of solutions of e1 + e2 + · · ·+ en + en+1 = d , where each
ei is a non-negative integer. This is the Candy Store Problem with d picks and n

switches. So, there are
(

d + n

n

)

monomials of degree less than or equal to d can be made using the n variables
x1, . . . , xn .

10. Find a recurrence relation for the number of strings made from
0 ’s, 1 ’s, and 2 ’s that do not contain two consecutive zeros or two
consecutive ones.

Let an equal the number of strings made from 0 ’s, 1 ’s, and 2 ’s that do not
contain two consecutive zeros or two consecutive ones. I see that a1 = 3 and
a2 = 7 . I notice that the number of legal strings with right-most two in position
m is

{

am−1 if m = n

2am−1 if m < n
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because once I put 0 or 1 in position m + 1 , then the rest of the string is
completely determined. I now see that if n ≥ 2 , then

an = an−1 + 2an−2 + · · ·+ 2a1 + 2† + 2‡

The number 2† counts all strings with right most two in position 1 . The number
2‡ counts all strings without any twos. The above formula is not really a recurrence
relation, so we clean it up a little. Observe that an−1 is almost the same as an ;
that is,

an−1 = an−2 + 2an−3 + · · · + 2a1 + 2† + 2‡.

In other words, an−1 + (an−1 + an−2) = an . Our answer is

an = 2an−1 + an−2, a0 = 1, a1 = 3.

A good way to check this recurrence relation is to notice that a2 really is 7 and
a3 really is 17 .

11. Solve the recurrence relation an = 4an−1 − 4an−2 + 2n with a0 = 1 and
a1 = 7 . CHECK your answer.

The characteristic polynomial x2 − 4x+4 = (x− 2)2 ; so we know that the general
solution of the homogeneous problem is an = c12

n+c2n2n . We look for a particular
solution of the given nonhomogeneous problem of the form an = An22n . We see
that A = 1

2
works. So, the general solution of the given non-homogeneous problem

is
an = c12

n + c2n2n + n22n−1.

We need to find c1 and c2 with

1 = a0 = c1 and 7 = a1 = 2c1 + 2c2 + 1.

So c1 = 1 and c2 = 2 . Our solution is

an = 2n + n2n+1 + n22n−1.

We see that a0 = 1 , a1 = 2 + 4 + 1 = 7 , and

4an−1 − 4an−2 + 2n =







4
(

2n−1 + (n − 1)2n + (n − 1)22n−2
)

−4
(

2n−2 + (n − 2)2n−1 + (n − 2)22n−3
)

+2n

=







4
(

2n−1 + n2n − 2n + n22n−2 − 2n2n−2 + 2n−2
)

−4
(

2n−2 + n2n−1 − (2)2n−1 + n22n−3 − 4n2n−3 + (4)2n−3
)

+2n
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=







(2)2n + 2n2n+1 − (4)2n + 2n22n−1 − n2n+1 + 2n

−2n − n2n+1 + (4)2n − n22n−1 + n2n+1 − (2)2n

+2n

=







(2)2n − (4)2n + 2n − 2n + (4)2n − (2)2n + 2n

+2n2n+1 − n2n+1 − n2n+1 + n2n+1

+2n22n−1 − n22n−1

= 2n + n2n+1 + n22n−1 = an. X


