Math 574, Exam 4, Spring 2006
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Write in complete sentences No Calculators.

YOU MUST JUSTIFY YOUR ANSWERS.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website a few hours after the exam is finished.

1. (7 points) Express the sum $\sum_{k=0}^{r}\binom{n+k}{k}$ as a single binomial coefficient. PROVE your answer. (If you quote a formula we did in class, then the prove the formula.)
2. (7 points) How many paths are there from $(0,0)$ to $(8,5)$ on the $x y$-plane if each path consists of a series of steps, where each step is either a move one unit to the right or a move one unit up. (No moves to the left or downward are allowed.)
3. (7 points) What is the coefficient of $x^{4} y^{2} z w^{3}$ in the expansion of $(x+y+z+w)^{10}$?
4. (7 points) How many different terms are there in the expansion of $(x+y+z+w)^{10}$ (after collecting the common terms)?
5. (7 points) Consider this VARIATION of the Tower of Hanoi problem. There are three towers in a ROW: tower A, tower B, and tower C. There are n disks of different sizes stacked on tower A. One must move all n disks to tower C. One may NEVER place a bigger disk on top of a smaller disk. In the present problem, one may move a disk only to an ADJACENT tower. Let a_{n} be the minimum number of moves needed to transfer a stack of n disks from tower A to tower C. Find a_{1}, a_{2}, a_{3}. Find a recurrence relation for $a_{1}, a_{2}, a_{3}, \ldots$.
6. (7 points) Find a recurrence relation for the number of strings made from 0 's, 1 's, and 2 's that contain two consecutive zeros.
7. (8 points) Solve the recurrence relation $a_{n}=-a_{n-1}+6 a_{n-2}-4 n+23$ with $a_{0}=0$ and $a_{1}=-6$. CHECK your answer.
