Math 574, Exam 2, Spring 2006

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 10 problems. Each problem is worth 5 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Let $S=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$ and let $f: S \rightarrow S$ be an onto function. Does f have to be one-to-one? Prove or give a counter-example.
2. Let S be the set of positive integers and let $f: S \rightarrow S$ be an onto function. Does f have to be one-to-one? Prove or give a counter-example.
3. Recall that the Fibonacci numbers are: $f_{1}=1, f_{2}=1$, and for $n \geq 3$ $f_{n}=f_{n-1}+f_{n-2}$. Prove that $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$ whenever n is a positive integer.
4. Let S, T, and U be sets, and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. Suppose that $g \circ f$ is onto. For each question, prove or give a counterexample.
(a) Does f have to be onto?
(b) Does g have to be onto?
5. What is a closed formula for $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$? Prove your answer. (Recall that a closed formula does not have any summation signs or any dots.)
6. Goldbach's conjecture states that every even integer greater than 2 is the sum of two primes. Prove that Goldbach's conjecture is equivalent to the statement that every integer greater than 5 is the sum of three primes.
7. Prove that every integer greater than 11 is the sum of 2 composite numbers.
8. For each positive integer n, let S_{n} be the following set of real numbers:

$$
S_{n}=\left\{x \in \mathbb{R} \left\lvert\, \frac{1}{n} \leq x<2+\frac{1}{n}\right.\right\}
$$

What is $\bigcup_{n=1}^{75} S_{n}$? What is $\bigcap_{n=1}^{75} S_{n}$? I only want the answer. I do not need to see any work.
9. Let S be a set of $n+1$ integers between 1 and $2 n$. Prove that at least one integer from S divides another integer from S.
10. Prove that for every positive integer n, there does exist a set T of n integers between 1 and $2 n$ such that no integer from T divides any other integer from T.

