
Math 574, Exam 2, Solutions, Spring 2006
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc.; although, by using
enough paper, you can do the problems in any order that suits you.

There are 10 problems. Each problem is worth 5 points. SHOW your work. Make
your work be coherent and clear. Write in complete sentences whenever this is

possible. CIRCLE your answer. CHECK your answer whenever possible. No
Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and let f : S → S be
an onto function. Does f have to be one-to-one? Prove or give a
counter-example.

OF COURSE. I am supposed to prove that if f is onto, then f is one-to-one. I
prove the contrapositive of the given statement. That is, I prove that if f is not
one-to-one, then f is not onto.

Suppose f is not one-to-one. Then there are two elements s 6= s′ in S with
f(s) = f(s′) . The domain of S consists of 15 elements. Two of these elements
are sent to the same place. So the image of f contains AT MOST 14 elements.
The target of f consists of 15 elements. The target of f has at least one more
element than the image of f . Thus, there is at least one s′′ ∈ S with s′′ not in
the image of S . We conclude that f is not onto.

2. Let S be the set of positive integers and let f : S → S be an onto
function. Does f have to be one-to-one? Prove or give a counter-
example.

OF COURSE NOT!!! Define f(n) to be the greatest integer less than or equal to
n+1

2
. (In other words, f(1) = f(2) = 1 , f(3) = f(4) = 2 , f(5) = f(6) = 3 , etc.)

We see that f is onto but not one-to-one.

3. Recall that the Fibonacci numbers are: f1 = 1 , f2 = 1 , and for n ≥ 3
fn = fn−1 + fn−2 . Prove that f1 + f3 + · · · + f2n−1 = f2n whenever n is
a positive integer.

We prove this result by induction on n .

Base case: When n = 1 , the left side is f1 = 1 and the right side is f2 = 1 . We
have equality.
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Inductive Hypothesis: Fix a positive integer n . Assume that

f1 + f3 + · · ·+ f2n−1 = f2n.

We will prove that: f1 + f3 + · · · + f2n−1 + f2n+1 = f2n+2 . The inductive
hypothesis ensures that

f1 + f3 + · · ·+ f2n−1 + f2n+1 = (f1 + f3 + · · ·+ f2n−1) + f2n+1 = f2n + f2n+1.

The definition of the Fibonacci numbers tells us that f2n + f2n+1 = f2n+2 . We
have completed the proof of the inductive step; and therefore we have completed
the proof the result.

4. Let S , T , and U be sets, and let f : S → T and g : T → U be
functions. Suppose that g ◦ f is onto. For each question, prove or give
a counterexample.
(a) Does f have to be onto?
(b) Does g have to be onto?

(a) The function f does NOT have to be onto. Consider S = U = {1} ,
T = {1, 2} , f(1) = 1 , g(1) = g(2) = 1 . We see that g ◦ f is onto, but f

is not onto.
(b) The function g DOES have to be onto. Let u be an arbitrary element

of U . The function g ◦ f is onto; so, there exists an element s ∈ S with
g ◦ f(s) = u . Thus f(s) is an element of T and g sends THIS element
of T to u .

5. What is a closed formula for
n∑

k=1

k3 = 13 +23 +33 + · · ·+n3 ? Prove your

answer. (Recall that a closed formula does not have any summation
signs or any dots.)

We prove by induction that
n∑

k=1

k3 = n2(n+1)2

4 .

Base case: We see that when n = 1 , then
n∑

k=1

k3 and n2(n+1)2

4
are both equal

to 1 .

Induction Hypothesis: Fix an integer n with 1 ≤ n . Assume

n∑

k=1

k3 =
n2(n + 1)2

4
.
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We will prove that
n+1∑
k=1

k3 = (n+1)2(n+2)2

4
. The left side is equal to

n∑

k=1

k3 + (n + 1)3.

We apply the induction hypothesis to see that the left side is equal to

n2(n + 1)2

4
+ (n + 1)3 =

(n + 1)2

4
[n2 + 4(n + 1)] =

(n + 1)2

4
[n2 + 4n + 4]

=
(n + 1)2

4
(n + 2)2,

and this is the right side. We have completed the proof of the inductive step; and
therefore, we have completed the proof of the result.

6. Goldbach’s conjecture states that every even integer greater than 2 is
the sum of two primes. Prove that Goldbach’s conjecture is equivalent
to the statement that every integer greater than 5 is the sum of three
primes.

Assume the original conjecture. Prove the alternate form. Let n be an
integer greater than 5 . If n is even, then n− 2 is an even integer greater than 2
and Goldbach’s conjecture ensures that there exist prime numbers p and q with
p + q = n − 2 . Thus, p + q + 2 = n and the conclusion of the alternate form
holds for n . If n is odd, then n − 3 is an even integer greater than 2 . Once
again Goldbach’s conjecture ensures that there exist prime numbers p and q with
p + q = n − 3 . Thus, p + q + 3 = n . In any event, n is the sum of three primes.

Assume the alternate form. Prove the original conjecture. Let n > 2 be
an even integer. We see that n + 2 is an arbitrary integer greater than 5 . The
alternate form of the conjecture ensures that there exist prime numbers p , q , and
r with n + 2 = p + q + r . We notice that at least one of the numbers p , q , and
r must be even (because three odd numbers add up to an odd number and n + 2
is even). The only even prime number is 2 . So one of the three prime numbers
p , q or r is equal to 2 . Re-label, if necessary, in order to have r = 2 . We now
subtract 2 from each side of n + 2 = p + q + 2 to see that n = p + q .

7. Prove that every integer greater than 11 is the sum of 2 composite
numbers.

Let n be an integer greater than 11 . We notice that n− 4 , n− 6 , and n− 8 all
are integers greater than 3 . Notice that 3 must divide one of these three integers.
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Indeed, there are only three possibilities for the remainder after n − 8 is divided
by 3 . If the remainder is 0 , then 3 divides n − 8 . If the remainder is 1 , then
3 divides n − 6 . If the remainder is 2 , then 3 divides n − 4 . Thus, one of the
three numbers n− 8 , n− 6 , and n− 4 are composite. On the other hand, 4 , 6 ,
and 8 all are composite; so, n = (n − 4) + 4 = (n − 6) + 6 = (n − 8) + 8 is the
sum of two composite numbers.

8. For each positive integer n , let Sn be the following set of real numbers:

Sn = {x ∈ R | 1
n
≤ x < 2 + 1

n
}.

What is
75⋃

n=1
Sn ? What is

75⋂
n=1

Sn ? I only want the answer. I do not

need to see any work.

We see that

75⋃
n=1

Sn = {x ∈ R | 1
75

≤ x < 3 and
75⋂

n=1
Sn = {x ∈ R | 1 ≤ x < 2 + 1

75
}.

9. Let S be a set of n + 1 integers between 1 and 2n . Prove that at
least one integer from S divides another integer from S .

We will prove the statement by induction on n .

Base case: If n = 1 , then S consists of two numbers from {1, 2} ; so, S = {1, 2}
and one of the integers from S (namely 1 ) does indeed the other integer from S

(namely 2 ).

Inductive step: Let n be some fixed integer with 2 ≤ n . We suppose that every
set T of n integers between 1 and 2n − 2 contains an integer which divides
another integer from the set T .

Let S be a set of n+1 integers between 1 and 2n . We will prove that at least
one integer from S divides another integer from S .

We give names to the elements of S : s1 < s2 < · · · < sn+1 . There are three cases.

Case 1: sn+1 < 2n . In this case, sn < 2n − 2 (since sn < sn+1 ≤ 2n − 1 ). We
may apply the induction hypothesis to the set T = S \ {sn+1} . We notice that T

is a set of n integers between 1 and 2n−2 . The induction hypothesis guarantees
that some element of T divides some other element of T . But T sits inside S ;
so, some element of S divides some other element of S .
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Case 2: sn+1 = 2n and some si divides sn+1 for some i < n + 1 . There is
nothing for us to prove in this case; since, in this case, one element of S (namely
si ) divides another element of S (namely sn+1 ).

Case 3: sn+1 = 2n and no si divides sn+1 for any i < n + 1 . First notice
that n is not an element of S because n divides 2n , but none of the elements of
S (except sn+1 ) divide 2n . Let T be the set {n}∪S \ {sn, sn+1} . Observe that
the induction hypothesis applies to T . Indeed, T consists of n integers between
1 and 2n−2 . (We know that sn−1 < sn < sn+1 = 2n .) The induction hypothesis
guarantees that some element of T divides some other element of T . We are not
quite finished yet, because T contains n , which is not in S . We have to make
sure that the division ti|tj , for some ti 6= tj in T , which is guaranteed by the
induction hypothesis, involves the elements of S ∩ T and not n . But this is easy.
We must rule out n as the element of ti of T and also as the element tj of T .

We make sure that n does not divide any element of T (other than n itself):
Every element that of T is less than 2n , and n does not divide any integers
between 1 and 2n − 1 , except n .

We make sure that none of the elements of T (other than n ) divide n . Our
hypothesis for case 3 says that none of the elements of T (other than n ) divide
2n ; and therefore, none of the elements of T (other than n ) divide n .

The proof of case 3 is now complete. The induction hypothesis guarantees that
some element of T divides some other element of T . We know that neither of
these elements is n . Every element of T , other than n , is also in S ; hence, some
element of S divides some other element of S .

In each of the three cases, we have proven that some element of S divides some
other element of S . The proof of the inductive step is complete; and therefore the
proof of the result is complete.

10. Prove that for every positive integer n , there does exist a set T of n

integers between 1 and 2n such that no integer from T divides any
other integer from T .

Let T = {n + 1, n + 2, . . . , 2n} . We see that T consists of n distinct integers

between 1 and 2n ; however, no element of T divides any other element of T .


