Math 574, Exam 2, Solutions, Spring 2006

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 10 problems. Each problem is worth 5 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.
I will post the solutions on my website a few hours after the exam is finished.

1. Let $S=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$ and let $f: S \rightarrow S$ be an onto function. Does f have to be one-to-one? Prove or give a counter-example.
OF COURSE. I am supposed to prove that if f is onto, then f is one-to-one. I prove the contrapositive of the given statement. That is, I prove that if f is not one-to-one, then f is not onto.

Suppose f is not one-to-one. Then there are two elements $s \neq s^{\prime}$ in S with $f(s)=f\left(s^{\prime}\right)$. The domain of S consists of 15 elements. Two of these elements are sent to the same place. So the image of f contains AT MOST 14 elements. The target of f consists of 15 elements. The target of f has at least one more element than the image of f. Thus, there is at least one $s^{\prime \prime} \in S$ with $s^{\prime \prime}$ not in the image of S. We conclude that f is not onto.
2. Let S be the set of positive integers and let $f: S \rightarrow S$ be an onto function. Does f have to be one-to-one? Prove or give a counterexample.

OF COURSE NOT!!! Define $f(n)$ to be the greatest integer less than or equal to $\frac{n+1}{2}$. (In other words, $f(1)=f(2)=1, f(3)=f(4)=2, f(5)=f(6)=3$, etc.) We see that f is onto but not one-to-one.
3. Recall that the Fibonacci numbers are: $f_{1}=1, f_{2}=1$, and for $n \geq 3$ $f_{n}=f_{n-1}+f_{n-2}$. Prove that $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$ whenever n is a positive integer.
We prove this result by induction on n.
Base case: When $n=1$, the left side is $f_{1}=1$ and the right side is $f_{2}=1$. We have equality.

Inductive Hypothesis: Fix a positive integer n. Assume that

$$
f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}
$$

We will prove that: $f_{1}+f_{3}+\cdots+f_{2 n-1}+f_{2 n+1}=f_{2 n+2}$. The inductive hypothesis ensures that

$$
f_{1}+f_{3}+\cdots+f_{2 n-1}+f_{2 n+1}=\left(f_{1}+f_{3}+\cdots+f_{2 n-1}\right)+f_{2 n+1}=f_{2 n}+f_{2 n+1} .
$$

The definition of the Fibonacci numbers tells us that $f_{2 n}+f_{2 n+1}=f_{2 n+2}$. We have completed the proof of the inductive step; and therefore we have completed the proof the result.
4. Let S, T, and U be sets, and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. Suppose that $g \circ f$ is onto. For each question, prove or give a counterexample.
(a) Does f have to be onto?
(b) Does g have to be onto?
(a) The function f does NOT have to be onto. Consider $S=U=\{1\}$, $T=\{1,2\}, f(1)=1, g(1)=g(2)=1$. We see that $g \circ f$ is onto, but f is not onto.
(b) The function g DOES have to be onto. Let u be an arbitrary element of U. The function $g \circ f$ is onto; so, there exists an element $s \in S$ with $g \circ f(s)=u$. Thus $f(s)$ is an element of T and g sends THIS element of T to u.
5. What is a closed formula for $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$? Prove your answer. (Recall that a closed formula does not have any summation signs or any dots.)
We prove by induction that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
Base case: We see that when $n=1$, then $\sum_{k=1}^{n} k^{3}$ and $\frac{n^{2}(n+1)^{2}}{4}$ are both equal to 1 .

Induction Hypothesis: Fix an integer n with $1 \leq n$. Assume

$$
\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

We will prove that $\sum_{k=1}^{n+1} k^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4}$. The left side is equal to

$$
\sum_{k=1}^{n} k^{3}+(n+1)^{3}
$$

We apply the induction hypothesis to see that the left side is equal to

$$
\begin{aligned}
\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}= & \frac{(n+1)^{2}}{4}\left[n^{2}+4(n+1)\right]=\frac{(n+1)^{2}}{4}\left[n^{2}+4 n+4\right] \\
& =\frac{(n+1)^{2}}{4}(n+2)^{2}
\end{aligned}
$$

and this is the right side. We have completed the proof of the inductive step; and therefore, we have completed the proof of the result.
6. Goldbach's conjecture states that every even integer greater than 2 is the sum of two primes. Prove that Goldbach's conjecture is equivalent to the statement that every integer greater than 5 is the sum of three primes.

Assume the original conjecture. Prove the alternate form. Let n be an integer greater than 5 . If n is even, then $n-2$ is an even integer greater than 2 and Goldbach's conjecture ensures that there exist prime numbers p and q with $p+q=n-2$. Thus, $p+q+2=n$ and the conclusion of the alternate form holds for n. If n is odd, then $n-3$ is an even integer greater than 2. Once again Goldbach's conjecture ensures that there exist prime numbers p and q with $p+q=n-3$. Thus, $p+q+3=n$. In any event, n is the sum of three primes.

Assume the alternate form. Prove the original conjecture. Let $n>2$ be an even integer. We see that $n+2$ is an arbitrary integer greater than 5 . The alternate form of the conjecture ensures that there exist prime numbers p, q, and r with $n+2=p+q+r$. We notice that at least one of the numbers p, q, and r must be even (because three odd numbers add up to an odd number and $n+2$ is even). The only even prime number is 2 . So one of the three prime numbers p, q or r is equal to 2 . Re-label, if necessary, in order to have $r=2$. We now subtract 2 from each side of $n+2=p+q+2$ to see that $n=p+q$.
7. Prove that every integer greater than 11 is the sum of 2 composite numbers.

Let n be an integer greater than 11 . We notice that $n-4, n-6$, and $n-8$ all are integers greater than 3 . Notice that 3 must divide one of these three integers.

Indeed, there are only three possibilities for the remainder after $n-8$ is divided by 3 . If the remainder is 0 , then 3 divides $n-8$. If the remainder is 1 , then 3 divides $n-6$. If the remainder is 2 , then 3 divides $n-4$. Thus, one of the three numbers $n-8, n-6$, and $n-4$ are composite. On the other hand, 4, 6, and 8 all are composite; so, $n=(n-4)+4=(n-6)+6=(n-8)+8$ is the sum of two composite numbers.
8. For each positive integer n, let S_{n} be the following set of real numbers:

$$
S_{n}=\left\{x \in \mathbb{R} \left\lvert\, \frac{1}{n} \leq x<2+\frac{1}{n}\right.\right\} .
$$

What is $\bigcup_{n=1}^{75} S_{n}$? What is $\bigcap_{n=1}^{75} S_{n}$? I only want the answer. I do not need to see any work.

We see that

$$
\bigcup_{n=1}^{75} S_{n}=\left\{x \in \mathbb{R} \left\lvert\, \frac{1}{75} \leq x<3 \quad\right. \text { and } \quad \bigcap_{n=1}^{75} S_{n}=\left\{x \in \mathbb{R} \left\lvert\, 1 \leq x<2+\frac{1}{75}\right.\right\} .\right.
$$

9. Let S be a set of $n+1$ integers between 1 and $2 n$. Prove that at least one integer from S divides another integer from S.

We will prove the statement by induction on n.
Base case: If $n=1$, then S consists of two numbers from $\{1,2\}$; so, $S=\{1,2\}$ and one of the integers from S (namely 1) does indeed the other integer from S (namely 2).

Inductive step: Let n be some fixed integer with $2 \leq n$. We suppose that every set T of n integers between 1 and $2 n-2$ contains an integer which divides another integer from the set T.

Let S be a set of $n+1$ integers between 1 and $2 n$. We will prove that at least one integer from S divides another integer from S.

We give names to the elements of $S: s_{1}<s_{2}<\cdots<s_{n+1}$. There are three cases.
Case 1: $s_{n+1}<2 n$. In this case, $s_{n}<2 n-2$ (since $s_{n}<s_{n+1} \leq 2 n-1$). We may apply the induction hypothesis to the set $T=S \backslash\left\{s_{n+1}\right\}$. We notice that T is a set of n integers between 1 and $2 n-2$. The induction hypothesis guarantees that some element of T divides some other element of T. But T sits inside S; so, some element of S divides some other element of S.

Case 2: $s_{n+1}=2 n$ and some s_{i} divides s_{n+1} for some $i<n+1$. There is nothing for us to prove in this case; since, in this case, one element of S (namely s_{i}) divides another element of S (namely s_{n+1}).

Case 3: $s_{n+1}=2 n$ and no s_{i} divides s_{n+1} for any $i<n+1$. First notice that n is not an element of S because n divides $2 n$, but none of the elements of S (except s_{n+1}) divide $2 n$. Let T be the set $\{n\} \cup S \backslash\left\{s_{n}, s_{n+1}\right\}$. Observe that the induction hypothesis applies to T. Indeed, T consists of n integers between 1 and $2 n-2$. (We know that $s_{n-1}<s_{n}<s_{n+1}=2 n$.) The induction hypothesis guarantees that some element of T divides some other element of T. We are not quite finished yet, because T contains n, which is not in S. We have to make sure that the division $t_{i} \mid t_{j}$, for some $t_{i} \neq t_{j}$ in T, which is guaranteed by the induction hypothesis, involves the elements of $S \cap T$ and not n. But this is easy. We must rule out n as the element of t_{i} of T and also as the element t_{j} of T.

We make sure that n does not divide any element of T (other than n itself): Every element that of T is less than $2 n$, and n does not divide any integers between 1 and $2 n-1$, except n.

We make sure that none of the elements of T (other than n) divide n. Our hypothesis for case 3 says that none of the elements of T (other than n) divide $2 n$; and therefore, none of the elements of T (other than n) divide n.

The proof of case 3 is now complete. The induction hypothesis guarantees that some element of T divides some other element of T. We know that neither of these elements is n. Every element of T, other than n, is also in S; hence, some element of S divides some other element of S.

In each of the three cases, we have proven that some element of S divides some other element of S. The proof of the inductive step is complete; and therefore the proof of the result is complete.
10. Prove that for every positive integer n, there does exist a set T of n integers between 1 and $2 n$ such that no integer from T divides any other integer from T.

Let $T=\{n+1, n+2, \ldots, 2 n\}$. We see that T consists of n distinct integers between 1 and $2 n$; however, no element of T divides any other element of T.

