Let $m, n,$ and r be non-negative integers.

Which binomial coefficient is equal to \(\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} \)?

\[\binom{n+m}{r} \]

Prove that your answer to (a) is correct.

Combinatorial Proof:

How many ways are there to pick a committee of r people from $n + m$ people if n of the people are non-managers and the other m people are managers? We will answer the question correctly using two different approaches. Therefore, the two answers are equal.

Approach 1: There are \(\binom{n+m}{r} \) ways to pick an r-element subset of an $(n+m)$-element set.

Approach 2 There are \(\binom{n}{0} \binom{m}{r} \) ways to pick a committee with

- 0 non-managers and r managers.
- 1 non-manager and $r-1$ managers.
- r non-managers and 0 managers.

Altogether there are \(\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} \) ways to pick an r-element subset of an $(n+m)$-element set.