Math 574, 1992, Final Exam

PRINT Your Name:
There are 11 problems on 6 pages. The exam is worth a total of 150 points. SHOW your work. CIRCLE your answers. CHECK your answers.

1. (13 points) How many integer solutions are there to the equality

$$
x_{1}+x_{2}+x_{3}+x_{4}=14
$$

with $1 \leq x_{1}, 2 \leq x_{2}, 0 \leq x_{3}$, and $0 \leq x_{4}$?
2. (13 points) A class contains 50 women and 20 men. Ten people are chosen at random. What is the probability that none are men?
3. (13 points) A True - False test consists of ten questions. If a student selects answers at random, then what is the probability that the student will guess at least 7 correct answers?
4. (13 points) Eight friends decide to have their picture taken. How many ways are there to arrange all eight people in a straight line, if John refuses to stand next to Mary?
5. (14 points) How many monomials of degree d can be formed using the variables $x_{1}, x_{2}, \ldots, x_{n}$? (For example, the monomials of degree 3 in the variables $x_{1}, x_{2}, x_{3}, x_{4}$ are:

$$
\begin{array}{rrrrllllll}
x_{1}^{3}, & x_{2}^{3}, & x_{3}^{3}, & x_{4}^{3}, & x_{1}^{2} x_{2}, & x_{1}^{2} x_{3}, & x_{1}^{2} x_{4}, & x_{2}^{2} x_{1}, & x_{2}^{2} x_{3}, & x_{2}^{2} x_{4}, \\
x_{3}^{2} x_{1}, & x_{3}^{2} x_{2}, & x_{3}^{2} x_{4}, & x_{4}^{2} x_{1}, & x_{4}^{2} x_{2}, & x_{4}^{2} x_{3}, & x_{1} x_{2} x_{3}, & x_{1} x_{3} x_{4}, & x_{1} x_{2} x_{4}, & \left.x_{2} x_{3} x_{4} .\right)
\end{array}
$$

6. (14 points) Prove that $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
7. (14 points) Prove that the sum of the fifth powers of any five consecutive nonnegative integers is divisible by 25 .
8. (14 points) Write

$$
\binom{300}{300}+\binom{301}{300}+\binom{302}{300}+\binom{303}{300}+\cdots+\binom{2997}{300}+\binom{2998}{300}+\binom{2999}{300}+\binom{3000}{300}
$$

as one binomial coefficient. Explain your work.
9. (14 points) Write

$$
\begin{aligned}
& \binom{600}{0}\binom{1100}{700}+\binom{600}{1}\binom{1100}{699}+\binom{600}{2}\binom{1100}{698}+\binom{600}{3}\binom{1100}{697}+\ldots \\
& \cdots+\binom{600}{597}\binom{1100}{103}+\binom{600}{598}\binom{1100}{102}+\binom{600}{599}\binom{1100}{101}+\binom{600}{600}\binom{1100}{100}
\end{aligned}
$$

as one binomial coefficient. Explain your work.
10. (14 points) Solve the recurrence relation $a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=3$, with $a_{0}=0, a_{1}=3$, and $a_{2}=13$.
11. (14 points) Find a CLOSED formula for $\sum_{k=0}^{n} k^{4}$.

