Math 574, 1992, Exam 1

There are 4 problems. Each problem is worth 25 points.

1. Prove that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

2. Consider the sequence of integers $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$, where $a_{1}=2, a_{2}=12$, and for all n, with $3 \leq n, a_{n}=2 a_{n-1}+4 a_{n-2}$. If $1 \leq n$, then prove that

$$
a_{n}=(1+\sqrt{5})^{n}+(1-\sqrt{5})^{n} .
$$

3. Suppose that

$$
\begin{equation*}
a_{1} \leq a_{2} \leq \cdots \leq a_{n-1} \leq a_{n} \quad \text { and } \quad b_{1} \leq b_{2} \leq \cdots \leq b_{m-1} \leq b_{m} \tag{*}
\end{equation*}
$$

are lists of integers.
(a) Give an upper bound on the number of comparisons that are needed in order to merge the lists in $\left({ }^{*}\right)$.
(b) Prove your answer to (a).
4. Three rods are placed in a board and on one rod is a pile of n different sized disks arranged top to bottom from smallest to largest. You are to transfer the pile from $\operatorname{rod} A$ to rod C by moving one disk at a time in such a way that a larger disk is never placed on top of a smaller disk. Prove that this can be done in $2^{n}-1$ moves.

