Math 554, Exam 2, Summer 2005 Solutions
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 9 problems. Problems 1 through 4 are worth 5 points each. Problems 5 through 9 are worth 6 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Define upper bound. Use complete sentences. Include everything that is necessary, but nothing more.

The real number u is an upper bound of the non-empty set of real numbers E if $e \leq u$ for all $e \in E$.
2. Define supremum. Use complete sentences. Include everything that is necessary, but nothing more.

The real number α is the supremum of the non-empty set of real numbers E if α is an upper bound of E and if d is a real number with $d<\alpha$, then d is not an upper bound of E.
3. Define the sequence converges. Use complete sentences. Include everything that is necessary, but nothing more.

The sequence of real numbers $\left\{a_{n}\right\}$ converges to the real number p if for all $\varepsilon>0$, there exists an integer n_{0} such that whenever n is an integer with $n>n_{0}$, then $\left|a_{n}-p\right|<\varepsilon$.
4. State the Nested Interval Property. Use complete sentences. Include everything that is necessary, but nothing more.

If $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots$ is a countable family of closed bounded intervals, then the intersection $\bigcap_{n=1}^{\infty} I_{n}$ is not empty.
5. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers. Suppose that $\left\{a_{n}\right\}$ converges to the real number a and $\left\{b_{n}\right\}$ converges to the real number b. Prove that the sequence $\left\{a_{n} b_{n}\right\}$ converges to $a b$. ("We did this in class" is not a satisfactory answer. I expect a complete, coherent proof.)

Let $\varepsilon>0$ be arbitrary, but fixed.

- The sequence $\left\{a_{n}\right\}$ converges to a, so there exists n_{1} such that if $n \geq n_{1}$, then $\left|a_{n}-a\right| \leq 1$. For such n, the Corollary to the triangle inequality tells us that

$$
\left|a_{n}\right|-|a| \leq\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right| \leq 1
$$

and therefore, $\left|a_{n}\right| \leq|a|+1$.

- The sequence $\left\{b_{n}\right\}$ converges to b, so there exists n_{2} such that if $n \geq n_{2}$, then $\left|b_{n}-b\right| \leq \frac{\varepsilon}{2(|a|+1)}$.
- The sequence $\left\{a_{n}\right\}$ converges to a, so there exists n_{3} such that if $n \geq n_{3}$, then $\left|a_{n}-a\right| \leq \frac{\varepsilon}{2(|b|+1)}$.
Let n_{0} be the maximum of the three integers n_{1}, n_{2}, and n_{3}. Take $n \geq n_{0}$. We know that $n \geq n_{1}$; and therefore,

$$
\begin{equation*}
\left|a_{n}\right| \leq|a|+1 \tag{1}
\end{equation*}
$$

We know that $n \geq n_{2}$; and therefore,

$$
\begin{equation*}
\left|b_{n}-b\right| \leq \frac{\varepsilon}{2(|a|+1)} \tag{2}
\end{equation*}
$$

We know that $n \geq n_{3}$; and therefore,

$$
\begin{equation*}
\left|a_{n}-a\right| \leq \frac{\varepsilon}{2(|b|+1)} \tag{3}
\end{equation*}
$$

The triangle inequality tells us that
$\left|a_{n} b_{n}-a b\right|=\left|\left(a_{n} b_{n}-a_{n} b\right)+\left(a_{n} b-a b\right)\right| \leq\left|a_{n} b_{n}-a_{n} b\right|+\left|a_{n} b-a b\right|=\left|a_{n}\right|\left|b_{n}-b\right|+\left|a_{n}-a\right||b|$.
Use (1), (2) and (3) to see that

$$
\left|a_{n} b_{n}-a b\right| \leq\left|a_{n}\right|\left|b_{n}-b\right|+\left|a_{n}-a\right||b| \leq(|a|+1) \frac{\varepsilon}{2(|a|+1)}+\frac{\varepsilon}{2(|b|+1)}|b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

6. Give an example of a set X and a function $f: X \rightarrow X$ with f one-toone, but f not onto.

Let X be the set of natural numbers $\{1,2,3,4, \ldots\}$, and let $f: X \rightarrow X$ be $f(n)=n+1$. It is clear that f is one-to-one, but f is not onto because there is no element n in X with $f(n)=1$.
7. Find $\bigcap_{n=1}^{\infty}[-n, n]$.

The intersection is $[-1,1]$. The intervals in question are

$$
[-1,1] \subset[-2,2] \subset[-3,3] \subset \ldots
$$

The interval $[-1,1]$ is contained in all of the other intervals and nothing else is.
8. Suppose that A and B are non-empty sets of real numbers. Suppose further that 1 is a lower bound for both A and B. Let

$$
C=\{a b \mid a \in A \text { and } b \in B\}
$$

Prove $\inf C=(\inf A)(\inf B)$.
Let $\alpha=\inf A, \beta=\inf B$, and $\gamma=\inf C$.
We first show that $\alpha \beta \leq \gamma$. We start be showing that $\alpha \beta$ is a lower bound for C. Take an arbitrary element c from C. This c is equal to $a b$ for some $a \in A$ and $b \in B$. We know that α is a lower bound for A and β is a lower bound for B; so, $\alpha \leq a$ and $\beta \leq b$. Every number in sight is positive; therefore, $\alpha \beta \leq a b=c$. We have shown that $\alpha \beta$ is a lower bound for C. The number γ is the greatest lower bound for C. We conclude that $\alpha \beta \leq \gamma$.

Now we show that $\alpha \beta<\gamma$ is not possible. This part of our argument is a proof by contradiction. We suppose that $\alpha \beta<\gamma$. We show that this supposition leads to a contradiction. At any rate, we suppose $\alpha \beta<\gamma$. It follows that $\alpha<\gamma / \beta$ (again all numbers in sight are positive). The number γ / β is too big to be a lower bound for A; hence there is an element $a \in A$ with $a<\gamma / \beta$. It follows that $\beta<\gamma / a$. The number γ / a is too big to be a lower bound for B; hence there is an element $b \in A$ with $b<\gamma / a$. It follows that $a b$, which is an element of C, is SMALLER than γ which is $\inf C$. This is not possible. This contradiction results from the supposition that $\alpha \beta<\gamma$. Hence, $\alpha \beta<\gamma$ is not possible.

We have shown that $\alpha \beta \leq \gamma$ does happen. We have also shown that $\alpha \beta<\gamma$ does not happen. The only remaining possibility is that $\alpha \beta=\gamma$.
9. Let S be a set of real numbers. Let p be a limit point of S. Prove that there exists a sequence a_{n} IN S which converges to p.

Let a_{1} be any point in S, other than p. Let $\varepsilon_{1}=\left|a_{1}-p\right| / 2$. The point p is a limit point of S; so the ε_{1}-neighborhood of p must contain a point of S other than p; call this point a_{2}. Notice that

$$
\left|a_{2}-p\right| \leq \frac{\left|a_{1}-p\right|}{2}
$$

Let $\varepsilon_{2}=\left|a_{2}-p\right| / 2$. We repeat the above thought process. The point p is a limit point of S; so, the ε_{2}-neighborhood of p must contain a point of S other than p; call this point a_{3}. Notice that

$$
\left|a_{3}-p\right| \leq \frac{\left|a_{2}-p\right|}{2} \leq \frac{\left|a_{1}-p\right|}{4} .
$$

Continue in this manner to manufacture $a_{1}, a_{2}, a_{3}, \ldots$ in S. None of theses numbers is equal to p and

$$
\left|a_{n}-p\right| \leq \frac{\left|a_{1}-p\right|}{2^{n-1}}
$$

It is now clear that the sequence $\left\{a_{n}\right\}$ converges to p. Indeed, if $\varepsilon>0$ is given, then take n_{0} with $\frac{\left|a_{1}-p\right|}{2^{n_{0}-1}}<\varepsilon$. We see that if $n>n_{0}$, then

$$
\left|a_{n}-p\right| \leq \frac{\left|a_{1}-p\right|}{2^{n-1}}<\frac{\left|a_{1}-p\right|}{2^{n_{0}-1}}<\varepsilon
$$

