
Math 554, Exam 2, Summer 2005 Solutions
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc; although, by using
enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

There are 9 problems. Problems 1 through 4 are worth 5 points each. Problems 5
through 9 are worth 6 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may
pick it up any time before the next class. If you are interested, be sure to tell
me.

I will post the solutions on my website shortly after the class is finished.

1. Define upper bound. Use complete sentences. Include everything that
is necessary, but nothing more.

The real number u is an upper bound of the non-empty set of real numbers E if
e ≤ u for all e ∈ E .

2. Define supremum. Use complete sentences. Include everything that is
necessary, but nothing more.

The real number α is the supremum of the non-empty set of real numbers E if α
is an upper bound of E and if d is a real number with d < α , then d is not an
upper bound of E .

3. Define the sequence converges. Use complete sentences. Include
everything that is necessary, but nothing more.

The sequence of real numbers {an} converges to the real number p if for all
ε > 0 , there exists an integer n0 such that whenever n is an integer with n > n0 ,
then |an − p| < ε .

4. State the Nested Interval Property. Use complete sentences. Include
everything that is necessary, but nothing more.

If I1 ⊇ I2 ⊇ I3 ⊇ . . . is a countable family of closed bounded intervals, then the

intersection
∞⋂

n=1
In is not empty.
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5. Let {an} and {bn} be sequences of real numbers. Suppose that {an}
converges to the real number a and {bn} converges to the real number
b . Prove that the sequence {anbn} converges to ab . (“We did this
in class” is not a satisfactory answer. I expect a complete, coherent
proof.)

Let ε > 0 be arbitrary, but fixed.
• The sequence {an} converges to a , so there exists n1 such that if n ≥ n1 ,
then |an − a| ≤ 1 . For such n , the Corollary to the triangle inequality tells us
that

|an| − |a| ≤ ||an| − |a|| ≤ |an − a| ≤ 1;

and therefore, |an| ≤ |a| + 1 .
• The sequence {bn} converges to b , so there exists n2 such that if n ≥ n2 ,
then |bn − b| ≤ ε

2(|a|+1) .

• The sequence {an} converges to a , so there exists n3 such that if n ≥ n3 ,
then |an − a| ≤ ε

2(|b|+1) .

Let n0 be the maximum of the three integers n1 , n2 , and n3 . Take n ≥ n0 .
We know that n ≥ n1 ; and therefore,

(1) |an| ≤ |a| + 1.

We know that n ≥ n2 ; and therefore,

(2) |bn − b| ≤
ε

2(|a| + 1)
.

We know that n ≥ n3 ; and therefore,

(3) |an − a| ≤
ε

2(|b|+ 1)
.

The triangle inequality tells us that

|anbn−ab| = |(anbn−anb)+(anb−ab)| ≤ |anbn−anb|+|anb−ab| = |an||bn−b|+|an−a||b|.

Use (1), (2) and (3) to see that

|anbn−ab| ≤ |an||bn−b|+|an−a||b| ≤ (|a|+1)
ε

2(|a|+ 1)
+

ε

2(|b| + 1)
|b| <

ε

2
+

ε

2
= ε.



3

6. Give an example of a set X and a function f : X → X with f one-to-
one, but f not onto.

Let X be the set of natural numbers {1, 2, 3, 4, . . .} , and let f : X → X be
f(n) = n + 1 . It is clear that f is one-to-one, but f is not onto because there is
no element n in X with f(n) = 1 .

7. Find
∞⋂

n=1
[−n, n] .

The intersection is [−1, 1] . The intervals in question are

[−1, 1] ⊂ [−2, 2] ⊂ [−3, 3] ⊂ . . . .

The interval [−1, 1] is contained in all of the other intervals and nothing else is.

8. Suppose that A and B are non-empty sets of real numbers. Suppose
further that 1 is a lower bound for both A and B . Let

C = {ab | a ∈ A and b ∈ B}.

Prove inf C = (inf A)(inf B) .

Let α = inf A , β = inf B , and γ = inf C .

We first show that αβ ≤ γ . We start be showing that αβ is a lower bound for C .
Take an arbitrary element c from C . This c is equal to ab for some a ∈ A and
b ∈ B . We know that α is a lower bound for A and β is a lower bound for B ;
so, α ≤ a and β ≤ b . Every number in sight is positive; therefore, αβ ≤ ab = c .
We have shown that αβ is a lower bound for C . The number γ is the greatest
lower bound for C . We conclude that αβ ≤ γ .

Now we show that αβ < γ is not possible. This part of our argument is a proof by
contradiction. We suppose that αβ < γ . We show that this supposition leads to
a contradiction. At any rate, we suppose αβ < γ . It follows that α < γ/β (again
all numbers in sight are positive). The number γ/β is too big to be a lower bound
for A ; hence there is an element a ∈ A with a < γ/β . It follows that β < γ/a .
The number γ/a is too big to be a lower bound for B ; hence there is an element
b ∈ A with b < γ/a . It follows that ab , which is an element of C , is SMALLER
than γ which is inf C . This is not possible. This contradiction results from the
supposition that αβ < γ . Hence, αβ < γ is not possible.

We have shown that αβ ≤ γ does happen. We have also shown that αβ < γ does
not happen. The only remaining possibility is that αβ = γ .
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9. Let S be a set of real numbers. Let p be a limit point of S . Prove
that there exists a sequence an IN S which converges to p .

Let a1 be any point in S , other than p . Let ε1 = |a1 − p|/2 . The point p is a
limit point of S ; so the ε1 -neighborhood of p must contain a point of S other
than p ; call this point a2 . Notice that

|a2 − p| ≤
|a1 − p|

2
.

Let ε2 = |a2 − p|/2 . We repeat the above thought process. The point p is a limit
point of S ; so, the ε2 -neighborhood of p must contain a point of S other than
p ; call this point a3 . Notice that

|a3 − p| ≤
|a2 − p|

2
≤

|a1 − p|

4
.

Continue in this manner to manufacture a1, a2, a3, . . . in S . None of theses
numbers is equal to p and

|an − p| ≤
|a1 − p|

2n−1
.

It is now clear that the sequence {an} converges to p . Indeed, if ε > 0 is given,

then take n0 with |a1−p|
2n0−1 < ε . We see that if n > n0 , then

|an − p| ≤
|a1 − p|

2n−1
<

|a1 − p|

2n0−1
< ε.


