Math 554, Exam 1 Solutions, Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.
There are 7 problems. Problems 1 through 6 are worth 7 points each. Problem 7 is worth 8 points. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.
I will post the solutions on my website shortly after the class is finished.

1. Define upper bound.

The real number u is an upper bound of the non-empty set of real numbers E if $e \leq u$ for all $e \in E$.

2. Define supremum.

The real number α is the supremum of the non-empty set of real numbers E if α is an upper bound of E and if d is a real number with $d<\alpha$, then d is not an upper bound of E.

3. State the least upper bound axiom.

Every non-empty set of real numbers which is bounded from above has a supremum.
4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions with f onto and g onto, prove that the function $g \circ f: X \rightarrow Z$ is onto.

Take an arbitrary element $z \in Z$. The function g is onto, so there exists an element y in Y, with $g(y)=z$. The function f is onto, so there exists an element x in X with $f(x)=y$. We see that $(g \circ f)(x)=g(f(x))=g(y)=z$.
5. Let x and y be real numbers with $0<x$. Prove that there exists a positive integer N with $N x>y$. (I want you to give a complete proof of this result. I want more that its name. I want more than the statement that "we did this in class".)

This is a proof by contradiction. Suppose that

$$
\begin{equation*}
n x \leq y \text { for all positive integers } n \tag{*}
\end{equation*}
$$

Let $E=\{n x \mid n \in \mathbb{N}\}$. The supposition $\left(^{*}\right)$ tells us that y is an upper bound for E. The set E is non-empty because $x \in E$. The least upper bound axiom of \mathbb{R} tells us that E has a supremum; which we call α. We know $0<x$; so $\alpha-x<\alpha$. Thus, $\alpha-x$ is not an upper bound for E and $\alpha-x<n x$ for some $n \in \mathbb{N}$. We see that $\sup E=\alpha<(n+1) x \in E$. This is a contradiction. Supposition $(*)$ must be false. Thus, there must exist $n \in \mathbb{N}$ with $y<n x$.
6. Exhibit a one-to-one and onto function f from the open inteval $(3,4)$ to the open interval $(7,12)$.
I look for a linear function with $f(3)=7$ and $f(4)=12$. That is, I want the line which passes through the points $(3,7)$ and $(4,12)$. The slope is 5 the line is $y-7=5(x-3)$; or $f(x)=5 x-8$. Notice that $f(3)=7, f(4)=12$. If $3<x<4$, then $5(3)<5 x<5(4)$; so, $15-8<5 x-8<20-8=12$; that is $f(x) \in(7,12)$. Thus, $f:(3,4) \rightarrow(7,12)$ is a function. We see that f is one-toone. If x_{1} and x_{2} are in $(3,4)$, with $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $5 x_{1}-8=5 x_{2}-8$. Add 8 to both sides. Divide by 5 to see that $x_{1}=x_{2}$. We see that f is onto. Take $y \in(7,12)$. Observe that $\frac{y+8}{5} \in(3,4)$, and $f\left(\frac{y+8}{5}\right)=y$.
7. Let A and B be non-empty sets of real numbers. Suppose that $\inf A=2, \sup A=6, \inf B=4$ and $\sup B=30$. Let

$$
C=\left\{\left.\frac{a}{b} \right\rvert\, a \in A, \text { and } b \in B\right\}
$$

What is $\inf C$? Give a complete proof that your answer is correct.
Let $\gamma=\inf C$. We show that $\gamma=\frac{1}{15}$. We first show that $\frac{1}{15}$ is a lower bound for C. Let c be an arbitrary element of C. So, $c=\frac{a}{b}$ for some $a \in A$ and $b \in B$. We know that $2 \leq a$ and that $b \leq 30$; hence, $\frac{1}{30} \leq \frac{1}{b}$. We multiply these two inequalities to see that $\frac{2}{30} \leq \frac{a}{b}$. Thus, $\frac{1}{15}$ is a lower bound for C and the greatest lower bound for C, namely γ satisfies $\frac{1}{15} \leq \gamma$.

The rest of the argument is by contradiction:

$$
\begin{equation*}
\text { Suppose that } \frac{1}{15}<\gamma \tag{**}
\end{equation*}
$$

It follows that $2<30 \gamma$. But 2 is the greates lower bound of A; thus, 30γ is not a lower bound of A and there exists an element a of A with $a<30 \gamma$. We also have $\frac{a}{\gamma}<30$. We know that 30 is the least upper bound for B. It follows that there exists an element $b \in B$ with $\frac{a}{\gamma}<b$. We have now found the element $c=\frac{a}{b}<\gamma$. This contradicts the fact that $c \in C$ and γ is a lower bound for C. Supposition $\left({ }^{* *}\right)$ must be wrong.

We now know that $\frac{1}{15} \leq \gamma$, but $\frac{1}{15}$ is not less than γ. The only remaining possibility is that $\frac{1}{15}=\gamma$

