- **29.** $\nabla f = (2xe^{x^2} + y^2\sin xy^2, 2xy\sin xy^2, 0)$; check that $\nabla \times \nabla f = 0$ from this.
- **31.** (a) $(yz^2, xz^2, 2xyz)$;
 - (b) (z y, 0, -x)
 - (c) $(2xyz^3 3xy^2z^2, 2x^2y^2z y^2z^3, y^2z^3 2x^2yz^2)$
- 33. div $\mathbf{F} = 0$; curl $\mathbf{F} = (0, 0, 2(x^2 + y^2))f'(x^2 + y^2) + 2f(x^2 + y^2))$
- 35. (a) A cone about i' making an angle of $\pi/3$ with i'.
 - (b) $\nabla g = (3x^2, 5z, 5y + 2z)$
- **37.** (a) $[\partial P/\partial x)^2 + (\partial P/\partial y)^2]^{1/2}$
 - (b) A small packet of air would obey F = ma.
 - (c) Wind direction

39. (a)
$$\frac{\sqrt{R^2 + \rho^2}}{\rho} (z_0 - z_1)$$
 (b)
$$\sqrt{\frac{2(R^2 + \rho^2)z_0}{g\rho^2}}$$

41. 680 miles per hour

Chapter 5

Section 5.1

- 1. (a) 1
 - (b) 2

(c)
$$\ln 128 + \ln \sqrt{2}$$

$$(d) \frac{1}{2} \ln 2 = \ln \sqrt{2}$$

- 3. (a) $\frac{13}{15}$ (b) $\pi + \frac{1}{2}$

 - (c) 1 (d) $\log 2 \frac{1}{2}$
- 5. To show that the volumes of the two cylinders are equal, show that their area functions are equal.
- 7. $2r^3(\tan\theta)/3$
- 11. $(2/\pi)(e^2+1)$
- 15. $\frac{196}{15}$

Section 5.2

- 1. (a) $\frac{7}{12}$
- (c) $\frac{1}{9} \sin 1$
 - (d) $2 \ln 4 2$
- 5.

7. 1/4

9. Use Fubini's theorem to write

$$\iint_{R} [f(x)g(y)] dx dy = \int_{c}^{d} g(y) \left[\int_{a}^{b} f(x) dx \right] dy,$$

and notice that $\int_a^b f(x) dx$ is a constant and so may be pulled out.

- 11. 11/6
- 13. By Exercise 2(a), we have:

$$f(m,n) = \iint_{R} x^{m} y^{n} dx dy = \left(\frac{1}{m+1}\right) \left(\frac{1}{n+1}\right).$$

Then, as $m, n \to \infty$, we see that $\lim_{n \to \infty} f(m, n) = 0$.

15. Because $\int_0^1 dy = \int_0^1 2y \, dy = 1$, we have $\int_0^1 \left[\int_0^1 f(x, y) \, dy \right] \, dx = 1$. In any partition of $R = [0, 1] \times [0, 1]$, each rectangle R_{jk} contains points $\mathbf{c}_{jk}^{(1)}$ with x rational and $\mathbf{c}_{jk}^{(2)}$ with x irrational. If in the regular partition of order n, we choose $\mathbf{c}_{jk} = \mathbf{c}_{jk}^{(1)}$ in those rectangles with $0 \le y \le \frac{1}{2}$ and $\mathbf{c}_{jk} = \mathbf{c}_{jk}^{(2)}$ when $y > \frac{1}{2}$, the approximating sums are the same as those for

$$g(x, y) = \begin{cases} 1 & 0 \le y \le \frac{1}{2} \\ 2y & \frac{1}{2} < y < 1. \end{cases}$$

Because g is integrable, the approximating sums must converge to $\int_R g \, dA = 7/8$. However, if we had picked all $\mathbf{c}_{ij} = \mathbf{c}_{jk}^{(1)}$, all approximating sums would have the value 1.

17. Fubini's theorem does not apply because the integrand is not continuous nor bounded at (0, 0).

Section 5.3

- 1. (a) (iii) (b) (iv)
 - (c) (ii) (d) (i)
- 3. (a) 1/3, both.
 - (b) 5/2, both.
 - (c) $(e^2 1)/4$, both.
 - (d) 1/35, both.
- 5. $A = \int_{-r}^{r} \int_{-\sqrt{r^2 x^2}}^{\sqrt{r^2 x^2}} dy \ dx = 2 \int_{-r}^{r} \sqrt{r^2 x^2} \ dx = r^2 [\arcsin 1 \arcsin(-1)] = \pi r^2$
- 7. $28,000 \text{ ft}^3$
- **9.** 0

- 11. y-simple; $\pi/2$.
- 13. $\frac{2}{3}$
- **15.** 50 π
- 17. $\pi/24$
- **19.** Compute the integral with respect to y first. Split that into integrals over $[-\phi(x), 0]$ and $[0, \phi(x)]$ and change variables in the first integral, or use symmetry.
- **21.** Let $\{R_{ij}\}$ be a partition of a rectangle R containing D and let f be 1 on D. Thus, f^* is 1 on D and 0 on $R \setminus D$. Let $\mathbf{c}_{jk} \in R \setminus D$ if R_{ij} is not wholly contained in D. The approximating Riemann sum is the sum of the areas of those rectangles of the partition that are contained in D.

Section 5.4

- 1. (a) $\int_0^4 \int_0^{2x} dy \, dx$
 - (b) $\int_0^3 \int_{y^2}^9 dx \, dy$
 - (c) $\int_{-4}^4 \int_0^{\sqrt{16-x^2}} dy \, dx$
 - (d) $\int_0^1 \int_{\frac{\pi}{2}}^{\arcsin y} dx \, dy$
- **3.** (a) 1/8 (b) $\pi/4$ (c) 17/12
 - (d) G(b) G(a), where dG/dy = F(y, y) F(a, y) and $\partial F/\partial x = f(x, y)$.
- 5. $\frac{1}{2}(e-1)$
- 7. Note that the maximum value of f on D is e and the minimum value of f on D is 1/e. Use the ideas in the proof of Theorem 4 to show that

$$\frac{1}{e} \le \frac{1}{4\pi^2} \iint f(x, y) \ dA \le e.$$

9. The smallest value of $f(x, y) = 1/(x^2 + y^2 + 1)$ on D is $\frac{1}{6}$, at (1, 2), and so

$$\iint_D f(x, y) dx dy \ge \frac{1}{6} \cdot \text{area } D = 1.$$

The largest value is 1, at (0, 0), and so

$$\iint_D f(x, y) \ dx \ dy \le 1 \cdot \text{area } D = 6.$$

11.
$$\frac{4}{3}\pi abc$$

- 13. $\pi(20\sqrt{10}-52)/3$
- 15. $\sqrt{3}/4$
- 17. D looks like a slice of pie.

$$\int_0^1 \left[\int_0^x f(x, y) \, dy \right] \, dx + \int_1^{\sqrt{2}} \left[\int_0^{\sqrt{2-x^2}} f(x, y) \, dy \right] \, dx$$

19. Use the chain rule and the fundamental theorem of calculus.

Section 5.5

- 1. (a) (ii)
- (b) (i)
- (c) (iii)
- (d) (iv)

- **3.** 1/3
- **5.** 10

7.
$$x^2 + y^2 \le z \le \sqrt{x^2 + y^2}$$
,
 $-\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}$, $-1 \le y \le 1$

9.
$$0 \le z \le \sqrt{1 - x^2 - y^2}$$
,
 $-\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}$, $-1 \le y \le 1$

- 11. $50\pi/\sqrt{6}$
- **13.** 1/2
- **15.** 0
- 17. $a^5/20$
- **19.** 0
- 21. 3/10
- **23.** 1/6

25.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} f(x, y, z) \, dz \, dy \, dx$$

27.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} f(x, y, z) \, dz \, dy \, dx$$

29.
$$\iint_{D} \int_{0}^{f(x,y)} dz \ dx \ dy = \iint_{D} f(x,y) \ dx \ dy$$

31. Let M_{ϵ} and m_{ϵ} be the maximum and minimum of f on B_{ϵ} . Then we have the inequality m_{ϵ} vol $(B_{\epsilon}) \leq \iiint_{B_{\epsilon}} f \, dV \leq M_{\epsilon}$ vol (B_{ϵ}) . Divide by vol (B_{ϵ}) , let $\epsilon \to 0$ and use continuity of f.

Review Exercises for Chapter 5

- **1.** 81/2
- 3. $\frac{1}{4}e^2 e + \frac{9}{4}$
- 5. 81/2
- 7. $\frac{1}{4}e^2 e + \frac{9}{4}$
- **9.** 7/60
- **11.** 1/2
- 13. In the notation of Figure 5.3.1,

$$\iint_{D} dx \, dy = \int_{a}^{b} [\phi_{2}(x) - \phi_{1}(x)] \, dx.$$

- **15.** (a) 0
- (b) $\pi/24$
- (c) 0
- 17. *y*-simple; $2\pi + \pi^2$

19. x-simple; 73/3.

21. *y*-simple; 33/140.

23. y-simple; 71/420.

- **25.** 1/3
- **27.** 19/3
- 29. 7/12

- 31. The function $f(x, y) = x^2 + y^2 + 1$ lies between 1 and $2^2 + 1 = 5$ on D, and so the integral lies between these values times 4π , the area of D.
- 33. Interchange the order of integration (the reader should draw a sketch in the (u, t) plane):

$$\int_0^x \int_0^t F(u) \, du \, dt = \int_0^x \int_u^x F(u) \, dt \, du$$
$$= \int_0^x (x - u) F(u) \, du.$$

- 35. $\pi/12$
- 37. The region is the shaded region W in the figure.

The integral in the order dy dx dz, for example, is

$$\int_0^1 \int_z^1 \int_{1-x}^1 f(x, y, z) \, dy \, dx \, dz.$$

Chapter 6

Section 6.1

- 1. (a) One-to-one, Onto.
 - (b) Neither.
 - (c) One-to-one, Onto.
 - (d) Neither.
- 3. An appropriate linear function T is given by $T(x, y) = \left(x, -\frac{x}{3} + \frac{2y}{3}\right)$, or in matrix form, as:

$$T(\mathbf{v}) = A\mathbf{v} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \mathbf{v}.$$

- 5. S = the unit disc minus its center.
- 7. $D = [0, 3] \times [0, 1]$; yes.
- 9. The image is the triangle with vertices (0, 0), (0, 1), and (1, 1). T is not one-to-one, but becomes so if we eliminate the portion $x^* = 0$.
- 11. *D* is the set of (x, y, z) with $x^2 + y^2 + z^2 \le 1$ (the unit ball). *T* is not one-to-one, but is one-to-one on $(0, 1] \times (0, \pi) \times (0, 2\pi]$.
- 13. Showing that T is onto is equivalent in the 2×2 case to showing that the system ax + by = e, cx + dy = f can always be solved for x and y, where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

When you do this by elimination or by Cramer's rule, the quantity by which you must divide is det A. Thus, if det $A \neq 0$, the equations can always be solved.

15. Suppose that $T(\mathbf{x}) = T(\mathbf{y})$. Then

$$A\mathbf{x} + \mathbf{v} = A\mathbf{y} + \mathbf{v}$$
$$A\mathbf{x} = A\mathbf{y}.$$

By Exercise 12, this implies that x = y if and only if det $A \neq 0$.

Showing that $T(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$ is equivalent to showing that

$$T(\mathbf{x}) = A\mathbf{x} + \mathbf{v} = \mathbf{y}$$

or

$$A\mathbf{x} = \mathbf{y} - \mathbf{v}$$

has a solution for any choice of $y \in \mathbb{R}^2$. This happens if and only if det $A \neq 0$, by Exercise 13. Finally, verifying that T takes parallelograms to parallelograms follows exactly as in Exercise 14, by simply applying T to both sides of the given equation and simplifying.

17. We can show that T is not globally one-to-one by example. A simple choice is to compare the point (1,0) with (-1,0), which correspond to the polar coordinates $r=1, \theta=0$ and $r=1, \theta=\pi$, respectively. We note:

$$T(1\cos 0, 1\sin 0) = (1^2\cos 0, 1^2\sin 0)$$

= $(1^2\cos 2\pi, 1^2\sin 2\pi) = T(1\cos \pi, 1\sin \pi).$

Since T(1, 0) = T(-1, 0), T is not one-to-one.

Section 6.2

- 1. A good substitution might be u = 3x + 2y, v = x y, which has Jacobian $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{5}$.
- 3. $\frac{\pi}{2}(e-1)$
- 5. *D* is the region $0 \le x \le 4$, $\frac{1}{2}x + 3 \le y \le \frac{1}{2}x + 6$.

 (a) 140
 (b) -42
- 7. D^* is the region $0 \le u \le 1$, $0 \le v \le 2$; $\frac{2}{3}(9 2\sqrt{2} 3\sqrt{3})$.
- **9.** π
- 11. $\frac{64\pi}{5}$
- 13. $3\pi/2$
- 15. $\frac{5\pi}{2}(e^4-1)$
- 17. $2a^2$
- **19.** $\frac{21}{2} \left(e \frac{1}{e} \right)$
- 21. $\frac{100\pi}{3}$
- 23. $4\pi[\sqrt{3}/2 \log(1+\sqrt{3}) + \log\sqrt{2}]$
- **25.** $4\pi \log(a/b)$
- 27, 0
- **29.** $2\pi[(b^2+1)e^{-b^2}-(a^2+1)e^{-a^2}]$

- **31.** 24
- **33.** (a) $\frac{4}{3}\pi abc$ (b) $\frac{4}{5}\pi abc$
- 35. (a) Check that if $T(u_1, v_1) = T(u_2, v_2)$, then $u_1 = u_2$ and $v_1 = v_2$.
 - (b) 160/3
- 37. $\frac{4}{9}a^{2/3} \iint_{D^*} [f((au^2)^{1/3}, (av^2)^{1/3})u^{-1/3}v^{-1/3}] du dv$

Section 6.3

- 1. $\left(1, \frac{1}{3}a\right)$
- 3. $[\pi^2 \sin(\pi^2)]/\pi^3$
- 5. $\left(\frac{11}{18}, \frac{65}{126}\right)$
- 7. \$503.64
- 9. (a) δ , where δ is the (constant) mass density. (b) 37/12
- 11. $500\pi \left(10-\frac{1}{3}\right)$
- 13. $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- **15.** 1/4
- 17. Letting δ be density, the moment of inertia is $\delta \int_0^k \int_0^{2\pi} \int_0^{a \sec \phi} (\rho^4 \sin^3 \phi) \, d\rho \, d\theta \, d\phi.$
- 19. $(1.00 \times 10^8)_m$
- 21. (a) The only plane of symmetry for the body of an automobile is the one dividing the left and right sides of the car.
 - (b) $\bar{z} \cdot \iint_W \delta(x, y, z) dx dy dz$ is the z coordinate of the center of mass times the mass of W. Rearrangement of the formula for \bar{z} gives the first line of the equation. The next step is justified by the additivity property of integrals. By symmetry, we can replace z by -z and integrate in the region above the xy plane. Finally, we can factor the minus sign outside the second integral, and because $\delta(x, y, z) = \delta(u, v, -w)$, we are subtracting the second integral from itself. Thus, the answer is 0.

- (c) In part (b), we showed that \bar{z} times the mass of W is 0. Because the mass must be positive, \bar{z} must be 0.
- (d) By part (c), the center of mass must lie in both planes.
- 23. $V = -(4.71 \times 10^{19}) Gm/R \approx -(3.04 \times 10^9) m/R$, where m is the mass of a test particle at distance R from the planet's center.
- **25.** In the x, y-plane, the circle D given by $(x-a)^2 + y^2 = r^2$ has center (and center of mass) (a, 0). Also, the area of the circle has area $A(D) = \pi r^2$. Therefore, by Exercise 24 we have:

$$Vol(W) = 2\pi(a)(\pi r^2).$$

Section 6.4

- 1. 4
- **3.** 3/16
- 5. $\frac{1}{(1-\alpha)(1-\beta)}$
- 7. (a) 3π (b) $\lambda < 1$
- 9. Integration of $\iint e^{-xy} dx dy$ with respect to x first and then y gives log 2. Reversing the order gives the integral on the left side of the equality stated in the exercise.
- 11. Integrate over $[\varepsilon, 1] \times [\varepsilon, 1]$ and let $\varepsilon \to 0$ to show the improper integral exists and equals 2 log 2.
- 13. $\frac{2\pi}{9}[(1+a^3)^{3/2}-a^{9/2}-1]$
- 15. Use the fact that

$$\frac{\sin^2{(x-y)}}{\sqrt{1-x^2-y^2}} \leq \frac{1}{\sqrt{1-x^2-y^2}}.$$

- 17. Use the fact that $e^{x^2+y^2}/(x-y) \ge 1/(x-y)$ on the given region.
- **19.** Each integral equals 1/4, and Theorem 3 (Fubini's theorem) does apply.
- **21.** Here, we let $D_1 = [0, 1] \times [0, 1]$, and $D_2 = [1, \infty] \times [1, \infty]$, as in the hint. On D_1 , let $g(x, y) = \frac{1}{x^\alpha y^\beta}$ and $f(x, y) = \frac{1}{x^\alpha y^\beta + x^\gamma y^\delta}$. Since $x, y \ge 0$, it is clear that $0 \le f(x, y) \le g(x, y)$ for all points in D_1 . Therefore, since $\iint_{D_1} g(x, y) dx dy$ exists by Exercise 5, we know that $\iint_{D_1} f(x, y) dx dy$ must also exist.

You may use a similar argument for the region D_2 by choosing a different g(x, y) and applying the result of Exercise 6. Once $\iint f(x, y) dx dy$ exists over both the regions D_1 and D_2 , it will exist also over their union $D = D_1 \cup D_2$.

Review Exercises for Chapter 6

1. (a)
$$T\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2u+v \\ 2v \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

(b) $\iint_P f(x, y) dx dy = 4 \iint_S f(2u+v, 2v) du dv$

- 3. 3 (Use the change of variables $u = x^2 y^2$, v = xy.)
- 5. $\frac{1}{3}\pi(4\sqrt{2}-\frac{7}{2})$
- 7. $(5\pi/2)\sqrt{15}$
- 9. abc/6
- 11. Cut with the planes $x + y + z = \sqrt[3]{k/n}$, $1 \le k \le n 1$, k an integer.
- 13. $(25 + 10\sqrt{5})\pi/3$
- 15. $(e e^{-1})/4$ (Use the change of variables u = y x, v = y + x.)
- 17. $(9.92 \times 10^6)\pi$ grams
- **19.** (a) 32
 - (b) This occurs at the point of the unit sphere $x^2 + y^2 + z^2 = 1$ inscribed in the cube.
- **21.** $(0, 0, 3a^{4/8})$
- **23.** $4\pi \ln(a/b)$
- **25.** $\pi/2$
- **27.** (a) 9/2 (b) 64π
- **29.** Work the integral with respect to y first on the region $D_{\varepsilon,L} = \{(x,y) | \varepsilon \le x \le L, 0 \le y \le x\}$ to obtain $I_{\varepsilon,L} = \iint_{D_{\varepsilon,L}} f \ dx \ dy = \int_{\varepsilon}^{L} x^{-3/2} (1 e^{-x}) \ dx$. The integrand is positive, and so $I_{\varepsilon,L}$ increases as $\varepsilon \to 0$ and $L \to \infty$. Bound $1 e^{-x}$ above by x for 0 < x < 1 and by 1 for $1 < x < \infty$ to see that $I_{\varepsilon,L}$ remains bounded and so must converge. The improper integral does exist.
- **31.** (a) 1/6
- (b) $16\pi/3$
- 33. 2π

Chapter 7

Section 7.1

1.
$$\gamma(t) = \begin{cases} (3\cos \pi t, 3\sin \pi t), & t \in [0, 1] \\ (6t - 9, 0), & t \in [1, 2] \end{cases}$$

3.
$$\gamma(t) = \begin{cases} (t, \sin \pi t), & t \in [0, 1] \\ (2\pi - \pi t, 0), & t \in [1, 2] \end{cases}$$

5.
$$\gamma(t) = (3\cos 2\pi t, 4\sin 2\pi t, 3), \quad t \in [0, 1]$$

7.
$$\gamma(t) = (t, t, t^3), t \in [-3, 2], \text{ or } \gamma(t) = (5t - 3, 5t - 3, (5t - 3)^3), t \in [0, 1]$$

9.
$$\int_{\mathbf{c}} f(x, y, z) ds = \int_{I} f(x(t), y(t), z(t)) \|\mathbf{c}'(t)\| dt$$
$$= \int_{0}^{1} 0 \cdot 1 dt = 0$$

11. (a) 2 (b)
$$52\sqrt{14}$$

13.
$$-\frac{1}{3}(1+1/e^2)^{3/2}+\frac{1}{3}(2^{3/2})$$

15. (a) The path follows the straight line from (0, 0) to (1, 1) and back to (0, 0) in the xy plane. Over the path, the graph of f is a straight line from (0, 0, 0)to (1, 1, 1). The integral is the area of the resulting triangle covered twice and equals $\sqrt{2}$.

(b)
$$s(t) = \begin{cases} \sqrt{2}(1 - t^4) & \text{when } -1 \le t \le 0\\ \sqrt{2}(1 + t^4) & \text{when } 0 < t \le 1. \end{cases}$$

The path is

$$\mathbf{c}(s) = \begin{cases} (1 - s/\sqrt{2})(1, 1) & \text{when } 0 \le s \le \sqrt{2} \\ (s/(\sqrt{2} - 1))(1, 1) & \text{when } \sqrt{2} \le s \le 2\sqrt{2} \end{cases}$$
and $\int_{\mathbf{c}} f \, ds = \sqrt{2}$.

11. 0

17. $2a/\pi$

19. (a)
$$[2\sqrt{5} + \log(2 + \sqrt{5})]/4$$

(b) $(5\sqrt{5} - 1)/[6\sqrt{5} + 3\log(2 + \sqrt{5})]$

21. Since the graph g is parameterized by $\gamma(t) = (t, g(t))$, we have $\gamma'(t) = (1, g'(t))$, and thus:

$$\|\gamma'(t)\| = \sqrt{1 + (g'(t))^2}.$$

23. 2

25.
$$\frac{\pi\sqrt{2}}{8}$$

27.
$$\frac{\sqrt{2}}{3}t_0^3$$

29. (a)
$$\sqrt{\frac{2}{g}}$$

(b) Solving for y, we have:

$$y = -\sqrt{2x - x^2} + 1.$$

(Note that the negative square root was chosen for y.) Therefore our formula becomes:

$$\int_0^1 \frac{1}{-2g(\sqrt{2x-x^2}+1)} \, dx.$$

Section 7.2

1. -1

5, 9

7. By the Cauchy-Schwarz inequality, $|\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t)| \le ||\mathbf{F}(\mathbf{c}(t))|| ||\mathbf{c}'(t)||$ for every t. Thus,

$$\left| \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} \right| = \left| \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt \right|$$

$$\leq \int_{a}^{b} |\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t)| dt$$

$$\leq \int_{a}^{b} ||\mathbf{F}(\mathbf{c}(t))|| ||\mathbf{c}'(t)|| dt$$

$$\leq M \int_{a}^{b} ||\mathbf{c}'(t)|| dt = Ml.$$

9.
$$\frac{3}{4} - (n-1)/(n+1)$$

11. 0

13. The length of c.

15. If $\mathbf{c}'(t)$ is never 0, then the unit vector $\mathbf{T}(t) =$ $\mathbf{c}'(t)/\|\mathbf{c}'(t)\|$ is a continuous function of t and so is a smoothly turning tangent to the curve. The answer is no.

17. 7

19. Use the fact that **F** is a gradient to show that the work done is $\frac{1}{R_2} - \frac{1}{R_1}$, independent of the path.

21. (a) $\|\mathbf{c}'(x)\|$

(b) f has a positive derivative; it is one-to-one and onto [0, L] by the mean-value and intermediate-value

theorems. It has a differentiable inverse by the inverse function theorem.

- (c) $g'(s) = 1/\|\mathbf{c}'(x)\|$, where s = f(x).
- (d) By the chain rule, $\mathbf{b}'(s) = \mathbf{c}'(x) \cdot \mathbf{g}'(s)$, which has unit length by part (c).

Section 7.3

- 1. z = 2(y 1) + 1
- 3. 18(z-1) 4(y+2) (x-13) = 018z - 4y - x - 13 = 0.
- 5. Not regular when u = 0.
- 7. (a) (iii)
- (b) (i)
- (c) (ii)
- (d) (iv)
- 9. The vector $\mathbf{n} = (\cos v \sin u, \sin v \sin u, \cos u) = (x, y, z)$. The surface is the unit sphere centered at the origin.
- 11. $\mathbf{n} = -(\sin v)\mathbf{i} (\cos v)\mathbf{k}$; the surface is a cylinder.
- **13.** (a) $x = x_0 + (y y_0)(\partial h/\partial y)(y_0, z_0) + (z z_0)$ $(\partial h/\partial z)(y_0, z_0)$ describes the plane tangent to x = h(y, z) at $(x_0, y_0, z_0), x_0 = h(y_0, z_0)$.
 - (b) $y = y_0 + (x x_0)(\partial k/\partial x)(x_0, z_0) + (z z_0)$ $(\partial k/\partial z)(x_0, z_0)$
- **15.** z 6x 8y + 3 = 0
- 17. (a) The surface is a helicoid. It looks like a spiral ramp winding around the z axis. (See Figure 7.4.2.) It winds twice around, since θ goes up to 4π .
 - (b) $\mathbf{n} = \pm (1/\sqrt{1+r^2})(\sin \theta, -\cos \theta, r)$
 - (c) $y_0x x_0y + (x_0^2 + y_0^2)z = (x_0^2 + y_0^2)z_0$.
 - (d) If $(x_0, y_0, z_0) = (r_0, \cos \theta_0, r_0 \sin \theta_0, \theta_0)$, then representing the line segment in the form $\{(r\cos\theta_0, r\sin\theta_0, \theta_0)|0 \le r \le 1\}$ shows that the line lies in the surface. Representing the line as $\{(x_0, ty_0, z_0)|0 \le t \le 1/(x_0^2 + y_0^2)\}$ and substituting into the results of part (c) shows that it lies in the tangent plane at (x_0, y_0, z_0) .
- 19. (a) Using cylindrical coordinates leads to the parametrization

$$\Phi(z,\theta) = (\sqrt{25 + z^2} \cos \theta, \sqrt{25 + z^2} \sin \theta, z),$$

$$-\infty < z < \infty, 0 < \theta < 2\pi$$

as one possible solution.

- (b) $\mathbf{n} = (\sqrt{25 + z^2} \cos \theta, \sqrt{25 + z^2} \sin \theta, -z)/\sqrt{25 + 2z^2}$
- (c) $x_0x + y_0y = 25$
- (d) Substitute the coordinates along these lines into the defining equation of the surface and the result of part (c).

- **21.** (a) $u \mapsto u, v \mapsto v, u \mapsto u^3$, and $v \mapsto v^3$ all map \mathbb{R}
 - (b) $T_u \times T_v = (0, 0, 1)$ for Φ_1 , and this is never 0. For the surface Φ_2 , $\mathbf{T}_u \times \mathbf{T}_v = 9u^2v^2(0, 0, 1)$, and this is 0 along the u and v axes.
 - (c) We want to show that any two parametrizations of a surface that are smooth near a point will give the same tangent plane there. Thus, suppose $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3 \text{ and } \Psi: B \subset \mathbb{R}^2 \to \mathbb{R}^3 \text{ are}$ parametrized surfaces such that

$$\Phi(u_0, v_0) = (x_0, y_0, z_0) = \Psi(s_0, t_0)$$
 (i)

and

$$\begin{split} \left. \left. \left(\mathbf{T}_{u}^{\Phi} \times \mathbf{T}_{v}^{\Phi} \right) \right|_{(u_{0},v_{0})} \neq \mathbf{0} \\ \text{and} \qquad \left. \left(\mathbf{T}_{s}^{\Psi} \times \mathbf{T}_{t}^{\Psi} \right) \right|_{(s_{0},t_{0})} \neq \mathbf{0}, \end{split} \tag{ii}$$

so that Φ and Ψ are smooth and one-to-one in neighborhoods of (u_0, v_0) and (s_0, t_0) , which we may as well assume are D and B. Suppose further that they "describe the same surface," that is, $\Phi(D) = \Phi(B)$. To see that they give the same tangent plane at (x_0, y_0, z_0) , show that they have parallel normal vectors. To do this, show that there is an open set C with $(u_0, v_0) \in C \subset D$ and a differentiable map $f: C \to B$ such that $\Phi(u, v) =$ $\Psi(f(u,v))$ for $(u,v) \in C$. Once you have done this, computation shows that the normal vectors are related by $\mathbf{T}_u^{\Phi} \times \mathbf{T}_v^{\Phi} = [\partial(s,t)/\partial(u,v)]\mathbf{T}_s^{\Psi} \times \mathbf{T}_t^{\Psi}$.

To see that there is such an f, notice that since $\mathbf{T}_{s}^{\Psi} \times \mathbf{T}_{t}^{\Psi} \neq \mathbf{0}$, at least one of the 2 × 2 determinants in the cross product is not zero. Assume, for example, that

$$\begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \end{vmatrix} \neq 0.$$

Now use the inverse function theorem to write (s, t)as a differentiable function of (x, y) in some neighborhood of (x_0, y_0) .

- (d) No.
- 23. (a) We plug the parametrization into the left hand side of the equation, and simplify:

$$(\sqrt{x^2 + y^2} - R)^2 + z^2$$

$$= (\sqrt{((R + r\cos u)\cos v)^2 + ((R + r\cos u)\sin v)^2} - R)^2 + (r\sin u)^2$$

$$= (\sqrt{(R + r\cos u)^2} - R)^2 + r^2\sin^2 u$$

$$= (R + r\cos u - R)^2 + r^2\sin^2 u$$

$$= (r\cos u)^2 + r^2\sin^2 u$$

$$= r^2.$$

(b) We calculate the associated normal element

$$T_u \times T_v = (-r\cos u\cos v(R + r\cos u), -r\cos u\sin v(R + r\cos u), -r\sin u(R + r\cos u))$$

and find that it is not equal to the zero vector for any choice of (u, v).

Section 7.4

- **1.** 4π
- 3. $\frac{3}{2}\pi[\sqrt{2} + \log(1 + \sqrt{2})]$
- 5. (a) $(e^u \sin v, -e^u \cos v, e^u)$
 - (b) $x + z = \frac{\pi}{2}$
 - (c) $\pi \sqrt{2}(e-1)$
- 7. $\frac{\sqrt{21}}{2}$
- 9. $\frac{1}{3}\pi(6\sqrt{6}-8)$
- 11. The integral for the volume converges, whereas that for the area diverges.

13.
$$A(E) = \int_{0}^{2\pi} \int_{0}^{\pi}$$

 $\sqrt{a^2b^2\sin^2\phi\cos^2\phi + b^2c^2\sin^4\phi\cos^2\theta + a^2c^2\sin^4\phi\sin^2\theta} \,d\phi\,d\theta$

- **15.** $(\pi/6)(5\sqrt{5}-1)$
- 17. $(\pi/2)\sqrt{6}$
- 19. $4\sqrt{5}$; for fixed θ , (x, y, z) moves along the horizontal line segment y = 2x, $z = \theta$ from the z axis out to a radius of $\sqrt{5}|\cos\theta|$ into quadrant 1 if $\cos\theta > 0$ and into quadrant 3 if $\cos\theta < 0$.

21. $(\pi + 2)/(\pi - 2)$

23.
$$\pi(a+b)\sqrt{1+m^2}(b-a)$$

25.
$$\frac{4}{15}(9\sqrt{3}-8\sqrt{2}+1)$$

27. With
$$f(x, y) = \sqrt{R^2 - x^2 - y^2}$$
, (4) becomes

$$A(S') = \iint_D \sqrt{\frac{x^2 + y^2}{R^2 - x^2 - y^2} + 1} \, dx \, dy$$
$$= \iint_D \frac{R}{\sqrt{R^2 - x^2 - y^2}} \, dx \, dy,$$

where D is the disc of radius R. Evaluate using polar coordinates, noting it is improper at the boundary, to get $2\pi R^2$.

Section 7.5

- 1. $\frac{512}{3}\sqrt{5}$
- 3. $11\sqrt{14}$
- 5. (a) For this surface parameterized by Φ , we have:

$$x^{2} - y^{2} = (u + v)^{2} - (u - v)^{2}$$

$$= (u^{2} + 2uv + v^{2}) - (u^{2} - 2uv + v^{2})$$

$$= 4uv$$

$$= 4z.$$

- (b) 0
- 7. $\frac{3\sqrt{2}+5}{24}$
- 9. πa^3
- 11. (a) $\sqrt{2}\pi R^2$ (b) $2\pi R^2$
- 13. $\frac{\pi}{4} \left(\frac{5\sqrt{5}}{3} + \frac{1}{15} \right)$
- 15. $16\pi R^3/3$
- 17. (a) The sphere looks the same from all three axes, so these three integrals should be the same quantity with different labels on the axes.
 - (b) $4\pi R^4/3$
 - (c) $4\pi R^4/3$
- 19, 8
- **21.** (R/2, R/2, R/2)

- 23. (a) Directly compute the vector cross product $T_u \times T_v$ and then calculate its length and compare your answer to the left-hand side.
 - (b) In this case, F = 0, so $A(s) = \iint_D \sqrt{EG} du dv$.
 - (c) $4\pi a^2$
- **25.** Let $a = \partial x/\partial u$, $b = \partial y/\partial u$, $c = \partial x/\partial v$, and $d = \partial y/\partial v$. The conditions (a) and (b) in Exercise 16 are then $a^2 + b^2 = c^2 + d^2$ and ac + bd = 0. Show that $a \neq 0$ and, by a normalization argument, show that you can assume a = 1. Now calculate further.
- **27.** $2a^2$

Section 7.6

- 1. $\frac{5\pi}{2}$
- **3.** (a) 18π
- h) 367
- 5. $\pm 48\pi$ (the sign depends on orientation).
- 7. 4π
- 9. 2π (or -2π , if you choose a different orientation).
- 11. 2π
- 13. $12\pi/5$
- 15. With the usual spherical coordinate parametrization, $T_{\theta} \times T_{\phi} = -\sin \phi \mathbf{r}$ (see Example 1). Thus,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot (\mathbf{T}_{\phi} \times \mathbf{T}_{\theta}) \, d\phi \, d\theta$$
$$= \iint_{S} (\mathbf{F} \cdot \mathbf{r}) \sin \phi \, d\phi \, d\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{\pi} F_{r} \sin \phi \, d\phi \, d\theta$$

and

$$\iint_{S} f \, dS = \int_{0}^{2\pi} \int_{0}^{\pi} f \sin \phi \, d\phi \, d\theta.$$

17. For a cylinder of radius R=1 and normal component F_r ,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{a}^{b} \int_{0}^{2\pi} F_{r} \, d\theta \, dz.$$

- 19. $2\pi/3$
- **21.** $\frac{2}{5}a^3bc\pi$

Section 7.7

- 1. Apply formula (3) of this section and simplify; H = 0 and $K = -b^2/(u^2 + b^2)^2$.
- 3. Apply formula (3) of this section and simplify.

5.
$$K = \frac{-4a^6b^6}{(a^4b^4 + 4b^4u^2 + 4a^4v^2)^2}$$

7. Using the standard parametrization of the ellipsoid $\Phi(u, v) = (a \cos u \sin v, a \sin u \sin v, c \cos v), u \in [0, 2\pi], v \in [0, \pi]$, from Exercise 6 you should have found that the Gauss curvature of the ellipsoid is:

$$K = \frac{a^4 c^2}{(a^4 \cos^2 v + a^2 c^2 \cos^2 u \sin^2 v + a^2 c^2 \sin^2 u \sin^2 v)^2}$$
$$= \frac{a^4 c^2}{(a^4 \cos^2 v + a^2 c^2 \sin^2 v)^2}.$$

Then, the area area element for the ellipsoid is given as:

$$T_u \times T_v = \sin v \sqrt{a^4 \cos^2 v + a^2 c^2 \sin^2 v}.$$

This yields the integral:

$$\int_0^{\pi} \int_0^{2\pi} \frac{a^4 c^2 \sin v}{(a^4 \cos^2 v + a^2 c^2 \sin^2 v)^{\frac{3}{2}}} du \, dv.$$

To evaluate this integral, we try to get it into one of the standard forms found in the tables contained in the text:

$$\int_0^{\pi} \int_0^{2\pi} \frac{a^4 c^2 \sin v}{(a^4 \cos^2 v + a^2 c^2 \sin^2 v)^{\frac{3}{2}}} du \, dv$$

$$= 2\pi \int_0^{\pi} \frac{a^4 c^2 \sin v}{a^3 (a^2 \cos^2 v + c^2 \sin^2 v)^{\frac{3}{2}}} \, dv$$

$$= 2\pi a c^2 \int_0^{\pi} \frac{\sin v}{(a^2 \cos^2 v + c^2 (1 - \cos^2 v)^{\frac{3}{2}}} \, dv$$

$$= 2\pi a c^2 \int_0^{\pi} \frac{\sin v}{((a^2 - c^2) \cos^2 v + c^2)^{\frac{3}{2}}} \, dv$$

$$= \frac{2\pi a c^2}{(a^2 - c^2)^{\frac{3}{2}}} \int_0^{\pi} \frac{\sin v}{\left(\cos^2 v + \frac{c^2}{a^2 - c^2}\right)^{\frac{3}{2}}} \, dv.$$

At this point, make the substitution $w = \cos v$

$$\frac{2\pi ac^2}{(a^2 - c^2)^{\frac{3}{2}}} \int_0^{\pi} \frac{\sin v}{\left(\cos^2 v + \frac{c^2}{a^2 - c^2}\right)^{\frac{3}{2}}} dv$$

$$= \frac{2\pi ac^2}{(a^2 - c^2)^{\frac{3}{2}}} \int_{-1}^{1} \frac{1}{\left((w)^2 + \left(\sqrt{\frac{c^2}{a^2 - c^2}}\right)^2\right)^{\frac{3}{2}}} dw.$$

Finally, use the trigonometric substitution $w=\sqrt{\frac{c^2}{a^2-c^2}}\tan\theta$ to finish the integration. The final solution will simplify to 4π , verifying the Gauss–Bonnet theorem.

- 9. Apply formula (3) of this section and simplify.
- 11. Apply formula (2) of this section and simplify; $K = -h''/[(1 + (h')^2)^2h]$.

Review Exercises for Chapter 7

- 1. (a) $3\sqrt{2}(1-e^{6\pi})/13$
 - (b) $-\pi\sqrt{2}/2$
 - (c) $(236, 158\sqrt{26} 8)/35 \cdot (25)^3$
 - (d) $8\sqrt{2}/189$
- 3. (a) $\frac{2}{\pi} + 1$ (b) -1/2
- 5. $2a^3$
- 7. (a) A sphere of radius 5 centered at (2, 3, 0); $\Phi(\theta, \phi) = (2 + 5\cos\theta\sin\phi, 3 + 5\sin\theta\sin\phi, 5\cos\phi)$; $0 \le \theta \le 2\pi$; $0 \le \phi \le \pi$.
 - (b) An ellipsoid with center at (2, 0, 0); $\Phi(\theta, \phi) = (2 + (1/\sqrt{2})3\cos\theta\sin\phi, \\ 3\sin\theta\sin\phi, 3\cos\phi); 0 \le \theta \le 2\pi, 0 \le \phi \le \pi.$
 - (c) An elliptic hyperboloid of one sheet;

$$\Phi(\theta, z) = \left(\frac{1}{2}\sqrt{8 + 2z^2}\cos\theta, \frac{1}{3}\sqrt{8 + 2z^2}\sin\theta, z\right);$$

$$0 \le \theta \le 2\pi, -\infty \le z \le \infty.$$

- 9. $A(\Phi) = \frac{1}{2} \int_0^{2\pi} \sqrt{3\cos^2\theta + 5} \, d\theta$; Φ describes the upper nappe of a cone with elliptical horizontal cross sections.
- 11. $11\sqrt{3}/6$
- 13. $\sqrt{2}/3$
- 15. $5\sqrt{5}/6$
- 17. (a) $(e^y \cos \pi z, xe^y \cos \pi z, -\pi xe^y \sin \pi z)$ (b) 0
- 19. $\frac{1}{2}(e^2+1)$
- **21.** $\mathbf{n} = (1/\sqrt{5})(-1, 0, 2), 2z x = 1$
- **23.** 0
- **25.** If $\mathbf{F} = \nabla \phi$, then $\nabla \times \mathbf{F} = \mathbf{0}$ (at least if ϕ is of class C^2 ; see Theorem 1, Section 4.4). Theorem 3 of Section 7.2 shows that $\int_{\mathbf{c}} \nabla \phi \cdot d\mathbf{s} = 0$ because \mathbf{c} is a closed curve.

- **27.** (a) 24π
- (b) 24π
- (c) 60π
- **29.** (a) $[\sqrt{R^2 + p^2}(z_0 z_1)]/p$
 - (b) $\sqrt{2z_0(R^2+p^2)/p^2g}$

Chapter 8

Section 8.1

1.
$$\gamma(t) = \begin{cases} (2t-1, -t+1), & t \in [0, 1] \\ (2t-1, 2t-2), & t \in [1, 2] \\ (-4t+11, -t+4), & t \in [2, 3] \end{cases}$$

- 3. 8
- **5.** 8
- 7. 61
- **9.** -8
- 11. (a) 0
 - (b) $-\pi R^2$
 - (c) 0
 - (d) $-\pi R^2$
- 13. $3\pi a^2$
- 15. $3\pi/2$
- 17, $3\pi(b^2-a^2)/2$
- 19. (a) Both sides are 2π .
- 21. 0
- **23.** πab
- 25. A horizontal line segment divides the region into three regions of which Green's theorem applies; now use Exercise 16 or the technique in Figure 8.1.5.

(b) 0

- 27. $9\pi/8$
- **29.** If $\varepsilon > 0$, there is a $\delta > 0$ such that $|u(\mathbf{q}) u(\mathbf{p})| < \varepsilon$ whenever $\|\mathbf{p} \mathbf{q}\| = \rho < \delta$. Parametrize $\partial B_{\rho}(\mathbf{p})$ by $\mathbf{q}(\theta) = \mathbf{p} + \rho(\cos\theta, \sin\theta)$. Then

$$|I(\rho) - 2\pi u(\mathbf{p})| \le \int_0^{2\pi} |u(\mathbf{q}(\theta)) - u(\mathbf{p})| d\theta \le 2\pi.$$

31. If $\mathbf{p} = (p_1, p_2)$, parametrize $\partial B_{\rho}(\mathbf{p})$ by $\rho \mapsto (p_1 + \rho \cos \theta, p_2 + \rho \sin \theta)$, then $I(\rho) = \int_0^{2\pi} u(p_1 + \rho \cos \theta, p_2 + \rho \sin \theta) \, d\theta$. Differentiation under the integral sign gives

$$\frac{dI}{d\rho} = \int_0^{2\pi} \nabla u \cdot (\cos \theta, \sin \theta) \, d\theta = \int_0^{2\pi} \nabla u \cdot \mathbf{n} \, d\theta$$
$$= \frac{1}{\rho} \int_{\partial B_\rho} \frac{\partial u}{\partial \mathbf{n}} \, ds = \frac{1}{\rho} \iint_{B_\rho} \nabla^2 u \, dA$$

(the last equality uses Exercise 30).

33. Using Exercise 32,

$$\iint_{B_R} u \, dA = \int_0^R \int_0^{2\pi} u[\mathbf{p} + \rho(\cos\theta, \sin\theta)] \rho \, d\theta \, d\rho$$
$$= \int_0^R \left(\int_{\partial B_\rho} u \, ds \right) d\rho$$
$$= \int_0^R 2\pi \rho u(\mathbf{p}) \, d\rho = \pi R^2 u(\mathbf{p}).$$

35. Suppose *u* is subharmonic. We establish the assertions corresponding to Exercise 34(a) and (b). The argument for superharmonic functions is similar, with inequalities reversed

Suppose $\nabla^2 u \geq 0$ and $u(\mathbf{p}) \geq u(\mathbf{q})$ for all \mathbf{q} in $B_R(\mathbf{p})$. By Exercise 31, $I'(\rho) \geq 0$ for $0 < \rho \leq R$, and so Exercise 32 shows that $2\pi u(\mathbf{p}) \leq I(\rho) \leq I(R)$ for $0 < \rho \leq R$. If $u(\mathbf{q}) < u(\mathbf{p})$ for some $\mathbf{q} = \mathbf{p} + \rho(\cos\theta_0, \sin\theta_0) \in B_R(\mathbf{p})$, then, by continuity, there is an arc $[\theta_0 - \delta, \theta_0 + \delta]$ on $\partial B_\rho(\mathbf{p})$ where $u < u(\mathbf{p}) - d$ for some d > 0. This would mean that

$$2\pi u(\mathbf{p}) \le I(\rho) = \frac{1}{\rho} \int_0^{2\pi} u[\mathbf{p} + \rho(\cos\theta, \sin\theta)] \rho \, d\theta$$

$$\le (2\pi - 2\delta)u(\mathbf{p}) + 2\delta[u(\mathbf{p}) - d] \le 2\pi u(\mathbf{p}) - 2\delta d.$$

This contradiction shows that we must have $u(\mathbf{q}) = u(\mathbf{p})$ for every \mathbf{q} in $B_B(\mathbf{p})$.

If the maximum at \mathbf{p} is absolute for D, the last paragraph shows that $u(\mathbf{x}) = u(\mathbf{p})$ for all \mathbf{x} in some disc around \mathbf{p} . If $\mathbf{c} : [0, 1) \to D$ is a path from \mathbf{p} to \mathbf{q} , then $u(\mathbf{c}(t)) = u(\mathbf{p})$ for all t in some interval [0, b). Let b_0 be the largest $b \in [0, 1]$ such that $u(\mathbf{c}(t)) = u(\mathbf{p})$ for all $t \in [0, b)$. (Strictly speaking, this requires the notion of the least upper bound from a good calculus text.) Because u is continuous, $u(\mathbf{c}(b_0)) = u(\mathbf{p})$. If $b_0 \neq 1$, then the last paragraph would apply at $\mathbf{c}(b_0)$ and u is constantly equal to $u(\mathbf{p})$ on a disc around $\mathbf{c}(b_0)$. In particular, there is a $\delta > 0$ such that $u(\mathbf{c}(t)) = u(\mathbf{c}(b_0)) = u(\mathbf{p})$ on $[0, b_0 + \delta)$. This contradicts the maximality of b_0 , so we must have $b_0 = 1$. That is, $\mathbf{c}(\mathbf{q}) = \mathbf{c}(\mathbf{p})$. Because \mathbf{q} was an arbitrary point in D, u is constant on D.

37. Assume $\nabla^2 u_1 = 0$ and $\nabla^2 u_2 = 0$ are two solutions. Let $\phi = u_1 - u_2$. Then $\nabla^2 \phi = 0$ and $\phi(x) = 0$ for all $x \in \partial D$. Consider the integral $\iint_D \phi \nabla^2 \phi \ dA = -\iint_D \nabla \phi \cdot \nabla \phi \ dA$. Thus, $\iint_D \nabla \phi \cdot \nabla \phi \ dA = 0$, which implies that $\nabla \phi = 0$, and so ϕ is a constant function and hence must be identically zero.

Section 8.2

1.
$$\gamma(t) = \begin{cases} (3t - 1, 1, -6t + 4), & t \in [0, 1] \\ (2, 2t - 1, -6t + 4), & t \in [1, 2] \\ (-3t + 8, 3, 10t - 28), & t \in [2, 3] \\ (-1, -2t + 9, 2t - 4), & t \in [3, 4] \end{cases}$$

$$\Phi(u, v) = (u, v, 5 - 2u - 3v), & u \in [-1, 2], & v \in [1, 3]$$

- 3. 0 (Note: F is a gradient field.)
- **5.** *π*
- 7. 52
- 9. -2π
- 11. Each integral in Stokes' theorem is zero.
- **13.** 0
- 15. $-4\pi/\sqrt{3}$
- **17.** 0
- 19. $\pm 2\pi$
- **21.** Using Faraday's law, $\iint_{S} [\nabla \times \mathbf{E} + \partial \mathbf{H}/\partial t] \cdot d\mathbf{S} = 0$ for any surface S. If the integrand were a nonzero vector at some point, then by continuity the integral over some small disc centered at that point and lying perpendicular to that vector would be nonzero.
- 23. The orientations of $\partial S_1 = \partial S_2$ must agree.
- **25.** Suppose C is a closed loop on the surface drawn so that it divides the surface into two pieces, S_1 and S_2 . For the surface of a doughnut (torus) you must use two closed loops; can you see why? Then C bounds both S_1 and S_2 , but with positive orientation with respect to one and negative with respect to the other. Therefore,

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{S_{1}} \nabla \times \mathbf{F} \cdot d\mathbf{S} + \iint_{S_{2}} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$
$$= \int_{C} \mathbf{F} \cdot d\mathbf{s} - \int_{C} \mathbf{F} \cdot d\mathbf{s} = 0.$$

- 27. (a) If $C = \partial S$, $\int_C \mathbf{v} \cdot d\mathbf{s} = \iint_S (\nabla \times \mathbf{v}) \cdot d\mathbf{S} = \iint_S \mathbf{0} \cdot d\mathbf{s} = 0$.
 - (b) $\int_C \mathbf{v} \cdot d\mathbf{s} = \int_a^b \mathbf{v} \cdot \mathbf{c}'(t) \, dt = \mathbf{v} \cdot \int_a^b \mathbf{c}'(t) \, dt = \mathbf{v} \cdot (\mathbf{c}(b) \mathbf{c}(a))$, where $\mathbf{c}: [a, b] \to \mathbb{R}^3$ is a parametrization of C. (The vector integral is the vector whose components are the integrals of the component functions.) If C is closed, the last expression is 0.
- **29.** Both integrals give $\pi/4$.
- **31.** (a) 0 (b) π (c) π
- 33. -20π (or 20π if the opposite orientation is used).
- **35.** One possible answer: The Möbius curve C is also the boundary of an *oriented* surface \tilde{S} ; the equation in Faraday's law is valid for this new surface.

Section 8.3

- 1. (a) $f = x^2/2 + y^2/2 + C$
 - (b) F is not a gradient field.
 - (c) $f = \frac{1}{3}x^3 + xy^2 + C$
- 3. (a) There exists such a G, but no such g.
 - (b) There exists such a g, but no such G.
 - (c) There exists such a g, but no such G.
 - (d) Neither function exists.
- 5. If $\mathbf{F} = \nabla f = \nabla g$ and C is a curve from \mathbf{v} to \mathbf{w} , then $(f-g)(\mathbf{w}) (f-g)(\mathbf{v}) = \int_C \nabla (f-g) \cdot d\mathbf{s} = 0$ and so f-g is constant.
- 7. $x^2yz \cos x + C$
- 9. Yes, it is the gradient of g(x, y) = F(x) + F(y), where F'(x) = f(x).
- 11. No; $\nabla \times \mathbf{F} = (0, 0, -x) \neq \mathbf{0}$.
- 13. $e \sin 1 + \frac{1}{3}e^3 \frac{1}{3}$
- 15. 3.5×10^{29} ergs
- 17. (a) $f(x, y, z) = x^2 yz$
 - (b) Not a gradient field.
 - (c) Not a gradient field.
 - (d) $f(x, y, z) = x^2 \cos y$
- 19. Use Theorem 7 in each case.
 - (a) -3/2 (b) -1
 - (c) $\cos(e^2) \cos(1/e)/e$

21. (a) No.

(b)
$$\left(\frac{1}{2}z^2, xy - z, x^2y\right)$$
 or $\left(\frac{1}{2}z^2 - 2xyz - \frac{1}{2}y^2, -x^2z - z, 0\right)$.

- 23. $\frac{1}{3}(z^3\mathbf{i} + x^3\mathbf{j} + y^3\mathbf{k})$
- **25.** $(-z \sin y + y \sin x, xz \cos y, 0)$ (Other answers are possible.)
- **27.** (a) $\nabla \times \mathbf{F} = (0, 0, 2) \neq \mathbf{0}$
 - (b) Let $\mathbf{c}(t)$ be the path of an object in the fluid. Then $\mathbf{F}(\mathbf{c}(t)) = \mathbf{c}'(t)$. Let $\mathbf{c}(t) = (x(t), y(t), z(t))$. Then x' = -y, y' = x, and z' = 0, and so z is constant and the motion is parallel to the xy plane. Also, x'' + x = 0, y'' + y = 0. Thus, $x = A\cos t + B\sin t$ and $y = C\cos t + D\sin t$. Substituting these values in x' = -y, y' = x, we get C = -B, D = A, so that $x^2 + y^2 = A^2 + B^2$ and we have a circle.
 - (c) Counterclockwise.

29. (a)
$$\mathbf{F} = \frac{GmM}{(x^2 + y^2 + z^2)^{3/2}}(x, y, z);$$

$$\nabla \cdot \mathbf{F} = -GmM \left[\frac{x^2 + y^2 + z^2 - 3x^2}{(x^2 + y^2 + z^2)^{5/2}} + \frac{x^2 + y^2 + z^2 - 3z^2}{(x^2 + y^2 + z^2)^{5/2}} + \frac{x^2 + y^2 + z^2 - 3z^2}{(x^2 + y^2 + z^2)^{5/2}} \right]$$

(b) Let S be the unit sphere, S₁ the upper hemisphere,
 S₂ the lower hemisphere, and C the unit circle. If
 F = ∇ × G, then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_{1}} \mathbf{F} \cdot d\mathbf{S} + \iint_{S_{2}} \mathbf{F} \cdot d\mathbf{S}$$
$$= \int_{C} \mathbf{G} \cdot d\mathbf{s} - \int_{C} \mathbf{G} \cdot d\mathbf{s} = 0.$$

But $\iint_S \mathbf{F} \cdot d\mathbf{S} = -GmM \iint_S (\mathbf{r}/\|\mathbf{r}\|^3) \cdot \mathbf{n} \, dS = -4\pi \, GmM$, because $\|\mathbf{r}\| = 1$ and $\mathbf{r} = \mathbf{n}$ on S. Thus, $\mathbf{F} = \nabla \times \mathbf{G}$ is impossible. This does not contradict Theorem 8 because \mathbf{F} is not smooth at the origin.

Section 8.4

- **1.** 3
- 3. $4\pi r^3$
- 5. 4π
- **7.** 3

- 9. (a) 0
 - (b) 4/15
 - (c) -4/15
- 11. 6
- 13. $\frac{7}{10}$
- 15. 1
- 17. Apply the divergence theorem to $f \mathbf{F}$ using $\nabla \cdot (f \mathbf{F}) = \nabla f \cdot \mathbf{F} + f \nabla \cdot \mathbf{F}$.
- 19. If $\mathbf{F} = \mathbf{r}/r^2$, then $\nabla \cdot \mathbf{F} = 1/r^2$. If $(0, 0, 0) \notin \Omega$, the result follows from Gauss' theorem. If $(0, 0, 0) \in \Omega$, we compute the integral by deleting a small ball $B_{\varepsilon} = \{(x, y, z) | (x^2 + y^2 + z^2)^{1/2} < \varepsilon \}$ around the origin and then letting $\varepsilon \to 0$:

$$\iiint_{\Omega} \frac{1}{r^2} dV = \lim_{\varepsilon \to 0} \iiint_{\Omega \setminus B_{\varepsilon}} \frac{1}{r^2} dV = \lim_{\varepsilon \to 0} \iiint_{\partial(\Omega \setminus B_{\varepsilon})} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS$$

$$= \lim_{\varepsilon \to 0} \left(\iint_{\partial\Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS - \iint_{\partial B_{\varepsilon}} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS \right)$$

$$= \lim_{\varepsilon \to 0} \left(\iint_{\partial\Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS - 4\pi\varepsilon \right)$$

$$= \iint_{\partial\Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS.$$

The integral over ∂B_{ε} is obtained from Theorem 10 (Gauss' law), because $r = \varepsilon$ everywhere on B_{ε} .

- Use the vector identity for div(fF) and the divergence theorem for part (a). Use the vector identity
 ∇·(f∇g g∇f) = f∇²g g∇²f for part (b).
- **23.** (a) If $\phi(\mathbf{p}) = \iiint_W \rho(\mathbf{q})/(4\pi \|\mathbf{p} \mathbf{q}\|) dV(\mathbf{q})$, then

$$\nabla \phi(\mathbf{p}) = \iiint_{W} [\rho(\mathbf{q})/4\pi] \nabla_{\mathbf{p}} (1/\|\mathbf{p} - \mathbf{q}\|) \, dV(\mathbf{q})$$
$$= -\iiint_{W} [\rho(\mathbf{q})/4\pi] [(\mathbf{p} - \mathbf{q})/\|\mathbf{p} - \mathbf{q}\|^{3}] \, dV(\mathbf{q}),$$

where $\nabla_{\mathbf{p}}$ means the gradient with respect to the coordinates of \mathbf{p} and the integral is the vector whose components are the three component integrals. If \mathbf{p} varies in $V \cup \partial V$ and \mathbf{n} is the outward unit normal to ∂V , we can take the inner product using these components and collect the pieces as

$$\nabla \phi(\mathbf{p}) \cdot \mathbf{n} = - \iiint_{W} \frac{\rho(\mathbf{q})}{4\pi} \frac{1}{\|\mathbf{p} - \mathbf{q}\|^{3}} (\mathbf{p} - \mathbf{q}) \cdot \mathbf{n} \, dV(\mathbf{q}).$$

Thus.

$$\begin{split} \iint_{\partial V} \nabla \phi(\mathbf{p}) \cdot \mathbf{n} \, dV(\mathbf{p}) &= - \iint_{\partial V} \\ \left(\iiint_{W} \frac{\rho(\mathbf{q})}{4\pi} \frac{1}{\|\mathbf{p} - \mathbf{q}\|^{3}} (\mathbf{p} - \mathbf{q}) \cdot \mathbf{n} \, d\mathbf{q} \right) dV(\mathbf{p}). \end{split}$$

There are essentially five variables of integration here, three placing \mathbf{q} in W and two placing \mathbf{p} on ∂V . Use Fubini's theorem to obtain

$$\iint_{\partial V} \nabla \phi \cdot \mathbf{n} \cdot d\mathbf{S}$$

$$= -\iiint_{W} \frac{\rho(\mathbf{q})}{4\pi} \left[\iint_{\partial V} \frac{(\mathbf{p} - \mathbf{q}) \cdot \mathbf{n}}{\|\mathbf{p} - \mathbf{q}\|^{3}} dS(\mathbf{p}) \right] dV(\mathbf{q}).$$

If V is a symmetric elementary region, Theorem 10 says that the inner integral is 4π if $\mathbf{q} \in V$ and 0 if $\mathbf{q} \notin V$. Thus,

$$\iint_{\partial V} \nabla \phi \cdot \mathbf{n} \, dS = - \iiint_{W \cap V} \rho(\mathbf{q}) \, dV(\mathbf{q}).$$

Because $\rho = 0$ outside W,

$$\iint_{\partial V} \nabla \phi \cdot \mathbf{n} \, dS = -\iiint_{V} \rho(\mathbf{q}) \, dV(\mathbf{q}).$$

If V is not a symmetric elementary region, subdivide it into a sum of such regions. The equation holds on each piece, and, upon adding them together, the boundary integrals along appropriately oriented interior boundaries cancel, leaving the desired result.

- (b) By Theorem 9, $\iint_{\partial V} \nabla \phi \cdot d\mathbf{S} = \iiint_{V} \nabla^{2} \phi \, dV$, and so $\iiint_{V} \nabla^{2} \phi \, dV = -\iiint_{V} \rho \, dV$. Because both ρ and $\nabla^{2} \phi$ are continuous and this holds for arbitrarily small regions, we must have $\nabla^{2} \phi = -\rho$.
- 25. If the charge Q is spread evenly over the sphere S of radius R centered at the origin, the density of charge per unit area must be $Q/4\pi R^2$. If \mathbf{p} is a point not on S and $\mathbf{q} \in S$, then the contribution to the electric field at \mathbf{p} due to charge near \mathbf{q} is directed along the vector $\mathbf{p} \mathbf{q}$. Because the charge is evenly distributed, the tangential component of this contribution will be canceled by that from a symmetric point on the other side of the sphere at the same distance from \mathbf{p} . (Draw the picture.) The total resulting field must be radial. Because S looks the same from any point at a distance $\|\mathbf{p}\|$ from the origin, the field must depend only on radius and be of the form $\mathbf{E} = f(r)\mathbf{r}$.

If we look at the sphere Σ of radius $\|\mathbf{p}\|$, we have

(charge inside
$$\Sigma$$
) = $\iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S} = \iint_{\Sigma} f(\|\mathbf{p}\|) \mathbf{r} \cdot \mathbf{n} \, dS$
= $f(\|\mathbf{p}\|) \|\mathbf{p}\|$ area $\Sigma = 4\pi \|\mathbf{p}\|^3 f(\|\mathbf{p}\|)$.

If $\|\mathbf{p}\| < R$, there is no charge inside Σ ; if $\|\mathbf{p}\| > R$, the charge inside Σ is Q, and so

$$\mathbf{E}(\mathbf{p}) = \begin{cases} \frac{1}{4\pi} \frac{Q}{\|\mathbf{p}\|^3} \mathbf{p} & \text{if } \|\mathbf{p}\| > R \\ 0 & \text{if } \|\mathbf{p}\| < R. \end{cases}$$

- 27. By Theorem 10, $\iint_{\partial M} \mathbf{F} \cdot d\mathbf{S} = 4\pi$ for any surface enclosing the origin. But if \mathbf{F} were the curl of some field, then the integral over such a closed surface would have to be 0.
- **29.** If $S = \partial W$, then $\iint_S \mathbf{r} \cdot \mathbf{n} \, dS = \iiint_W \nabla \cdot \mathbf{r} \, dV = \iiint_W 3 \, dV = 3$ volume (W). For the geometric explanation, assume $(0, 0, 0) \in W$ and consider the skew cone with its vertex at (0, 0, 0) with base ΔS and altitude $\|\mathbf{r}\|$. Its volume is $\frac{1}{3}(\Delta S)(\mathbf{r} \cdot \mathbf{n})$.

Section 8.5

- 1. (a) $(2xv^2 vx^3) dx dv$
 - (b) $(x^2 + y^2) dx dy$
 - (c) $(x^2 + y^2 + z^2) dx dy dz$
 - (d) $(xy + x^2) dx dy dz$
 - (e) dx dy dz
- 3. (a) $2xy dx + (x^2 + 3y^2) dy$
 - (b) $-(x + y^2 \sin x) dx dy$
 - (c) -(2x + y) dx dy
 - (d) dx dy dz
 - (e) 2x dx dy dz
 - (f) 2y dy dz 2x dz dx
 - (g) $-\frac{4xy}{(x^2+y^2)^2} dx dy$
 - (h) 2xy dx dy dz
- 5. (a) $8\pi^2 + \frac{44\pi^3}{3} + \frac{11\pi^4}{2} + \frac{3\pi^5}{5}$
 - (b) $8\pi^2 + \frac{44\pi^3}{3} + \frac{53\pi^4}{2} + \frac{64\pi^5}{5} + \frac{7\pi^6}{3} + \frac{\pi^7}{7}$
 - (c) $8\pi + 10\pi^2 + 9\pi^3 + \frac{5\pi^4}{2} + \frac{\pi^5}{5}$

7. (a) Form₂ $(\alpha V_1 + V_2) = \text{Form}_2 (\alpha A_1 + A_2, \alpha B_1 + B_2, \alpha C_1 + C_2)$ $= (\alpha A_1 + A_2) dy dz + (\alpha B_1 + B_2) dz dx$ $+ (\alpha C_1 + C_2) dx dy$ $= \alpha (A_1 dy dz + B_1 dz dx + C_1 dx dy)$ $+ (A_2 dy dz + B_2 dz dx + C_2 dx dy)$ $= \alpha \text{ Form}_2 (V_1) + \text{Form}_2 (V_2).$

(b) $d\omega = \left(\frac{\partial A}{\partial x} dx + \frac{\partial A}{\partial y} dy + \frac{\partial A}{\partial z} dz\right) \wedge dx + A(dx)^{2} + \left(\frac{\partial B}{\partial x} dx + \frac{\partial B}{\partial y} dy + \frac{\partial B}{\partial z} dz\right) \wedge dy + B(dy)^{2} + \left(\frac{\partial C}{\partial x} dx + \frac{\partial C}{\partial y} dy + \frac{\partial C}{\partial z} dz\right) \wedge dz + C(dz)^{2}$

But $(dx)^2 = (dy)^2 = (dz)^2 = dx \wedge dx = dy \wedge dy = dz \wedge dz = 0$, $dy \wedge dx = -dx \wedge dy$, $dz \wedge dy = -dy \wedge dz$, and $dx \wedge dz = -dz \wedge dx$. Hence,

$$d\omega = \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) dy dz + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial y}\right) dz dx$$
$$+ \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx dy$$
$$= \text{Form}_2 (\text{curl } \mathbf{V}).$$

- 9. An oriented 1-manifold is a curve. Its boundary is a pair of points that may be considered a 0-manifold. Therefore, ω is a 0-form or function, and $\int_{\partial M} d\omega = \omega(b) \omega(a)$ if the curve M runs from a to b. Furthermore, $d\omega$ is the 1-form $(\partial \omega/\partial x) dx + (\partial \omega/\partial y) dy$. Therefore, $\int_M d\omega$ is the line integral $\int_M (\partial \omega/\partial x) d\omega + (\partial \omega/dy) dy = \int_M \nabla \omega \cdot d\mathbf{s}$. Thus, we obtain Theorem 3 of Section 7.2, $\int_M \nabla \omega \cdot d\mathbf{s} = \omega(b) \omega(a)$.
- 11. Put $\omega = F_1 dx dy + F_2 dy dz + F_3 dz dx$. The integral becomes

$$\iint_{\partial T} \omega = \iiint_{T} d\omega$$

$$= \iiint_{T} \left(\frac{\partial F_{1}}{\partial z} + \frac{\partial F_{2}}{\partial x} + \frac{\partial F_{3}}{\partial y} \right) dx dy dz.$$

- (a) 0
- (b) 40
- 13. Consider $\omega = x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$. Compute that $d\omega = 3 \, dx \, dy \, dz$, so that $\frac{1}{3} \iint_{\partial R} \omega = \frac{1}{3} \iiint_{R} d\omega = \iiint_{R} dx \, dy \, dz = v(R).$

Review Exercises for Chapter 8

- 1. (a) $2\pi a^2$
 - (b) 0
- **3.** 0
- 5. (a) $f = x^4/4 x^2y^3$
 - (b) -1/4
- 7. (a) Check that $\nabla \times \mathbf{F} = \mathbf{0}$.
 - (b) $f = 3x^2y\cos z + C$
 - (c) (
- 9. 23/6
- 11. No: $\nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$.
- 13. (a) $\nabla f = 3ye^{z^2}\mathbf{i} + 3xe^{z^2}\mathbf{j} + 6xyze^{z^2}\mathbf{k}$
 - (b) 0
 - (c) Both sides are 0.

- 15. $8\pi/3$
- 17. $\pi a^2/4$
- 19. 21
- 21. (a) G is conservative; F is not.
 - (b) $G = \nabla \phi \text{ if } \phi = (x^4/4) + (y^4/4) \frac{3}{2}x^2y^2 + \frac{1}{2}z^2 + C$, where C is any constant.
 - (c) $\int_{\alpha} \mathbf{F} \cdot d\mathbf{s} = 0; \int_{\alpha} \mathbf{G} \cdot d\mathbf{s} = -\frac{1}{2};$ $\int_{\beta} \mathbf{F} \cdot d\mathbf{s} = \frac{1}{3}; \int_{\beta} \mathbf{G} \cdot d\mathbf{s} = -\frac{1}{2}$
- 23. Use $(\nabla \cdot \mathbf{F})(x_0, y_0, z_0) =$ $\lim_{\rho \to 0} \frac{1}{V(\Omega_{\rho})} \iint_{\partial \Omega_{\rho}} \mathbf{F} \cdot \mathbf{n} \, dS \text{ from Section 8.4.}$