29, VF = (2xe’ + ysinxy?, 2xy sinxy?, 0): check that
V' x Vf = 0 from this.
31, (@) (yz2, x22, 2xy2);
(b) (Z - ¥ Os -x}
(¢} (2xyz® — 3xydz?, 2x2y22 —ypPE 23 2x?yz?)
33. GivE = O;curl F =
(0,0, 2% +32) =% 4 33 + 2 /(5% 4 32))
35, (1) A coneabouti’ making an angle of 7 /3 with i’
(b} Vg = (3252 5y + 22)
37, (@) [8P/ax)? + (0 P/ay)?]l/?
(6) A small packet of air would obey F = ma,

(©) N o
A ) Wind direction
¥ F
(@)
g Wind direction

(2o — z1)

/ p2 2
39. (a) VR4t
0

(b)

got

41. 680 miles per hour

Choapter 5

Seclion 5.1

L@@
{b) 2

Answers to Odd-Numberad Exercises

(c) In128 +1In+/2
1
@ $in2=Inv2

13 1

ra— i
ORNCERS
1
(c) 1 {d) log2 - 5
To show that the volumes of the two cylinders are equal,

show that their area functions are equal.

2r3(tan 8)/3
26

9
2/m)e* + 1)
35795 .

.

Section 8.2

L

3.

5.

@ () e—2

1
{c) §siui (dy 2ind — 2

0

z




5.

i1

3.

15.

i7.

S

1.

3.

5.

7.

9.

Arswers to Odd-Numberad Exercises

{Jse Fubini’s theorem to write

o b
f / LF (g dx dy = / g(y){ / 700) dx}a’y,
R Je a

and notice that fab Jix) dx is a constant and so may be
pulied out.

11/6

By Exercise 2(a), we have:

Fi 3 8 —_— ] 1
f(m,n)=/fo Y d“”’"“(m”) <”+1>'

Then, as m, n — oc, we see that im f(m, n) = 0.

B?caulse fol dy = jﬂl 2ydy = 1, we have
fo [fo f{x, yydy} dx = 1. In any partition of

= {0, 11 x {0, 1], each rectangle R contains points
c{lk) with x rational and c(zk) with x irrational. If in the

regular partition of order », we choose ¢ = c(k) in

those fectangles withd <y < and Cjf = c( )
¥ > :,:, the approximating sums are the same as those for

when

1
glx, y) = {2;;

Becsuse g is integrabie, the approximating sums must
converge to f » &d A = 7/8 However, if we had picked
all ¢j; = cf,?, all approximating sums would have the
value 1,

Fubini’s theorem does not apply because the integrand is
not continuous nor bounded at (0, ().

olion 5.3

(a) (i)
(¢} ()

(b) (iv)
(@ )

(2) 1/3, both.
(b) 5/2, both.
(¢} (e — 1)/4, both.
{d) 1/35, both.

A== [T fimdydx 27 VrtxT dy =

r*[arcsin 1 — arcsin(—1)] = 7r?

28,000

0

if.

13.

15,

17,

19.

2

oo

v

1.

[

i

7.

9.

i1,

y-simple; /2.

2

3
50

7 /24

Compute the integral with respeet to v first, Split that
into integrals over [—¢{x), 07 and [0, ¢(x)] and change
variables in the first integral, or use symmetry.

Let{R;;} be a partition of a rectangle R containing DD
and fet fbe lon D, Thus, /*is 1 on D and 0 on R\D.
Let ¢;; € R\D if R;; is not wholly contained in D. The
approximating Riemann sum is the sum of the areas of
those rectangies of the partition that are contained in 73,

@ fy f7
My [ [hdxdy

@ [ 5 ayax
@ fy JE" dxdy

dydx

@ 1/8 () m/4 (o) 17/12

{(dy G{b) — G{a), where dG/dy = F(v, y) ~
and 6F/dx = f(x, y).

Fa, y)

te-1)

Note that the maximum value of f on D is ¢ and the
minimum value of / on D is 1/e. Use the ideas in the
proof of Theorem 4 10 show that

ésWﬂ[]m ¥ di<e.

The smallest value of f(x, ) = 1/(x> +y* +Jon D

1
is r at (1, 2), and so

1
// flx,y)dxdy> —-area D= 1.
o 6
The largest value is 1, at (0, 0), and so

/ flx,y)dedy < i-areaD =6,
4 JD

4
gxabc




13. #(20/10 - 52)/3
15. /374

17. D jooks like 2 sfice of pie.

1 * ~Z V232
fﬂ[f f(x,y)dy] dx+f UO f(x,y)ddex
0 i

19. Use the chain rule and the fundamental theorem of
calculus.

Seclion 5.5
1. (@ @y ) {c) (iii) (dy (v)
3173

5. 10

Tox2 4yt <z </ 2432,
Syl <y g/ 2wl y=]

9. 0<z=</1-x2 32
~Vl=ysr s /1-32, -1 <y<]

11, 507/
13. 172
15, 0

17. &30
9. ¢

21. 3/10

23, 178

25, / / ] Sx, v, 2)de dy dx
xz‘aLy2

AT
27, ff / S, . 2y de dy dx
Fx,y)
29, /// dzdxdymf/f(x,y)dxa{]f
DJo D

31. Let M, and m, be the maximum and minimum of f on
Be. Then we have the inequality m, vol (B,) < I
S dV = M, vol(B.). Divide by vol (Be), let € — 0 and
use continuity of 7.

Answers to Odd-Numbered Exercises

Review Exercises for Chapter 5

1. 8172

1, 9
3. a—e —e+;1-
5. 8172
7. 7¢ —e+Z
9. 7/60
11. 12

13. In the notation of Figure 531,

b
f/ dxdym/ ka(x) — ¢1(x)] ax.
I a

15. ) 0 () 7/24  (¢) 0
17, y-simple; 2 + 2.

J?

19. x-simple; 73/3.

E

21, p-simple; 33/140,




Answers to Odd-Numberad Exercises

23. y-simple; 717420,

¥
im-n.
r=x ty\g’
b r=r
x
0 i
25, 13
27, 19/3
29, 7/12
¥
A

31, The function f{x, y) = x% 4+ y? + I tes between 1 and
22+ 1 =50n D, and so the integral lies between these

values times 4, the area of D.

33. Interchange the order of integration (the reader should

draw a sketch in the (u, /) plane);

X ! X X
/ / Flu)dude / / Flu)dtdu
0 0 0 i

] (x — u)F{w) du.
a

35 /12

37. The region is the shaded region ¥ in the figure,

z

(©,1,13
W
(1,0, 1) (L1, 1)
- ©.1,0)
(1,0,0) 4 L
(1,1,0
T

The integral in the order dy dx dz, for example, is

i 1 1
/ f J(x, v, 2)dy dx de.
G Jz I—x

Chapter &

Sec

ey

.

11.

13.

15,

fion 8.1

{2) One-to-one, Onto.
{b) Neither.
{c) One-tc-one, Onto.
(d) Neither.

An appropriate linear function T is given by

T{x,y} = (x, -% + %y), or in matrix form, as:

T{v) = Av=1{, 1} 2 v.
13

& == the unit disc minus its center,
D =10, 3] x [0, 13; ves.

The image is the triangle with vertices (0, 0), (0, 1), and
(1, 1. T is not one-to-one, but becomes so if we
eliminate the portion x¥ = 0,

Disthesetof (x, v, zy withx? 4+ 12 + 22 < 1 (the
unit ball). T is not one-to-one, but is one-te-one on

(0, 1] x {0, 7} » (0, 2]

Showing that T is ento is equivalent in the 2 x 2 case to
showing that the system ax + by = ¢, cx + dy = f can
always be solved for x and y, where

a b
¢ d

When you do this by elimination or by Cramer’s rule, the
quantity by which you must divide is det 4. Thus, if det
4 % (, the equations can always be solved.

Suppose that T'(x) = T{y). Then

Ax+v=dy+v
AX = Ay,

By Exercise 12, this implies that x = y if and only if
det 4 #£ G,
Showing that 7'(x) = Ax + v is equivalent to showing
that

Ty =Ax4+v=y

or

Ax =y —v




has a solution for any choice of ¥ € B2, This happens if
and only if det 4 + 0, by Fxercise 13. Finally, verifying
thet T takes parallelograms to parallelograms follows
exactly as in Exericse 14, by simply applying T to both
sides of the given equation and simplifying.

17. We can show that T is not globally one-to-one by
example. A simple choice is 1o compare the point {1, )
with (-1, 0), which correspond to the polar coordinates
r=18=0andr =18 =, respectively. We note:

T(1cos0, 1sin0) = (12 cos 0, 1% sin 0)
= (12c032n, §23in2?r) = T(icosm, Isinm).

Since T'(1, 0) = F(—1, 0}, T is not one-to-one.

Section 6.2

L. A good substitution mightbe o = 3x + 2y, v = x — 3,

il 1
which has Jacobian é%—:-i% = 3

3 J—;—(emml)
. . 1 1
5. Distheregion0 < x <4, -2ux+35y5 §x+6.
(a} 140 by —42
7. é)*istheregionOsusZ,OSst;
5(9_2~/:§—3\/3').
9

64
5

11.
13. 3n/2
15, %’f(e“—l)

17, 24

o 2o

100
21. 5

23. 47[v3/2 —log(1 + /3) + log /3]
25. 47 log(a/b)

27,0

29. 2x[(6% + e ~ (a2 + 1e"]

Answers fo Odd-Numbered Exercises

31. 24
33 () ;;rrabc ) grmbc
35, (2) Check that if T(uy, v1) == T(ug, vp), then u; = uy
and vV =g,
(b) 160/3
37. gazﬂ /f LF((au®)' 2, (av?) Py 1Py =112 gy iy
D*
Secficn 6.3
1. (§, %—a)
3. [7? —sin(n?)]/n3 #
11 65
> ("fz?’ Tﬁ"é)
7. $503.64
9. {(a) 8, where § is the {constant) mass density.

11.

13.

15,

17.

19.
21

(b) 37/12

1
00: 0— -
5 :r(i 3)
11 l
27272

1/4

Letting 8 be density, the moment of inertia is

k  pin pa segq}
8 f / / (p* sin® ¢) do de dg.
e Jo 0

(100 x 10%ym

(a) The only plane of syminetry for the body of an
automobile is the one dividing the left and right
sides of the car.

by z- fffw 8(x, v, z) dx dy dz is the z coordinate
of the center of mass times the mass of .
Rearrangement of the formula for 2 gives the first
line of the equation. The next step is justified by the
additivity property of integrals. By sytumetry, we
canreplace z by —z and integrate in the region

- above the xy plane. Finally, we can factor the minus

sign outside the second integral, and because
8x, ¥, 2} = 8{u, v, —w), we are subtracting the
second integral from itself, Thus, the answer is 0,




Answers fo Odd-Numbered Exercises

{c) In part (b}, we showed that 7 times the mass of ¥ is
0. Because the mass must be positive, Z must be 0,

(d) By part (c), the center of mass must lie in both

planes.

23, V= (471 x 101Gm/R ~ —(3.04 x 10%ym/R,
where m is the mass of a test particle at distance R from
the planet’s center.

25, Iuthe x, y-plane, the circle D given by
{x — a)? + y? = 2 has center (and center of mass)

{a, 0). Also, the area of the circle has area A(D) = nrl.
Therefore, by Exercise 24 we have:
Vol( W) = 2m(a)(zr?).
Sechon 6.4
1. 4
3. 3116
1

5. (i—a}i-p)

7. (a) 37
M i<l

9. Integration of [ e™*¥ dx dy with respect to x first and
then v gives log 2. Reversing the order gives the integral
on the left side of the equality stated in the exercise.

11. Integrate over {g, 1] x {g, 1] and let ¢ — 0 to show the
improper integral exists and equals 2 log 2.

i3. %5{(1 N R L |

15, Use the fact that

sin® (x — 3) - 1
Vimxioyt T \/1_xz_yz'

17. Use the fact that e +% /(x — y) = 1/(x — ) on the
given region.

19. Each integral equais 1/4, and Theorem 3 (Fubini’s
theorem) does apply.

21. Here, we let Dy = {0, 1] x [0, 1], and Dy = {1, 00} x

[1, o0}, as in the hint. On Dy, let g(x, ¥) = ;;,—l;y and
flx,¥) = x-,l—vﬁix—,yp Since x, y = 0, it is clear that

0 < fx,y) < g{x, ) for all points in Dy. Therefore,
sinee f TDI g(x, v} dx dy exists by E?Lercise 5, we know
that f f D f{x, y)dxdy must also exist.

You may use a similar argument for the region Dy by
choosing & different g(x, ¥) and applying the result of
Exercise 6, Once f f F(x, y)dx dy exists over both the
regions Dy and Dy, it will exist also over their union
D =Dy U Ds.

Renview Exercises for Chopler 6

1

3

11.

13.

15.

17.

19.

21,
23,
25,
27.

29.

31,

33,

@ 7= D) =0=0)
®) [fp flx, ¥y dxdy =4 f[ fQu + v, 2v)dudv

3 (Use the change of variables u = xt =32 v=2xy)
1

372 D)

(5n /2315

abc/t

Cut with the planes x + v +z = /k/n,
1 <% <n-—1 kan integer.

(25 + 104/ /3

{e — ¢™"}/4 (Use the change of variables
U=y—x,v=y+x)

(9.92 x 1057 grams

(a) 32

(b) This oceurs at the point of the unit sphere
x? + 32 + 22 = 1 inscribed in the cube.

{0, 0, 3a%%)
4 In(a/b}
/2

(a) 9/2 (b)y 64w
Work the integral with respect to y first on the region
Dop =i{x, e <x <L,0 <y < x)tocbiain

L - -
Lep=ff, fdcdy=[x731~e ) du The
inteprand is positive, and so I; ; increases as & — 0 and
L — o0, Bound 1~ ¢ above by x for 0 < x < 1 and
by 1 for 1 < x < oo to see that I, ; remains bounded
and so must converge. The improper integral does exist.

@ 1/6 (b} l6m/3

2




Chopler 7

Section 7.1

_ j (Bcosmt, 3sinme), 1 €10, 1]
L. V(t)_{ (6r—9,0), rell,2]

. (t,sinme), £el0,1]
3oyl = {{2;1 — 71,00, t €11, 2]
5. v(r) = Beos2mt, 4sin2mt,3), <0, 13
T vty =066, te[=3,2,0r

v{t) = (5t~ 3,50~ 3,(5t = 3)%), re[0,1]

9. / F(x, p,z)ds = ] FG0), y(e), 2NN () de
4 i

1
=/ 0-1dt =0
0

1.2 2 () 52/14

13. m;-(l + 17572 4 5(23/2)

15. {a) The path foilows the straight line from (¢, 0) 10
{1, 1} and back to {0, 0) in the xy plane. Over the
path, the graph of f is a straight line from (0, 0, 0)
0 (1, 1, 1). The integral is the area of the resulting
triangle covered twice and equals +/Z.

V2(1-t%  when —1<z<0
) 5() = \
Jf(]»}w‘) when < <1
The path is
when O<s <42

sy = 4 GV
ClGAVZ - DHL D when 3 <s <23

and [, fds = /2,
17. 2a/x

19. (&) 12+/5 4 log(2 + +/5)}/4
(b) (5+/5 = 1)/[6+/3 + 3tog(2 + /)]

21. Since the graph g is parameterized by v (f) = (¢, 2(1)),
we have /(1) = (1, g'(£)}, and thus:

I (O = 1+ (g0

29. (@) §

(b} Solving for 3, we have:

2x —x2 4+ 1.

yo=—

{Note that the negative square root was chosen for
¥.} Therefore our formula becomes:

1
1
dx.
,/g —2g(v2x —x2 4+ 1)
Section 7.2
1. -1

@32 ®mo {c; 0 (@ 147

5 9

7. By the Cauchy-Schwarz inequality,
[E(e() + '(2)] = [ (e(r)f 1€/(1)]} for every 2. Thus,

b
/ Fods| = | / R <)

B
= / [Fle(t)} - c'(r)| dt

b
< f IFCe(N I e (0] d

b
SM/ e'(ey dt = M.

~(n—1)/(n+1)

L= N

11.

13. The length of c.

15. 1f ¢'(¢) is never 0, then the unit vector T() =
')/l (¢}]| is 2 continuous function of ¢ and so is a
smoothly turning tangent to the curve. The answer is no.

7. 7

19, Use the fact thatl F is a gradient to show that the work
done is — — —, independent of the path.
Ry Ry

21. (@) ()

{b} f has a positive derivative; it is one-to-one and onto
{0, L] by the mean-value and intermediate-vaiue




8§24
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theorems. It has a differentiable inverse by the
inverse function theorem.

(¢) g'{s) = 1/Ye(x)]], where s = f(x).

{d)} By the chainrule, b'(s) == ¢'(x) - g'(s), which has

unit length by part (¢),

Section 7.3

ey

.

N ~X
h +

1.
13

5.

7.

15.

z= 2y~ +1
B8z~ D -4y +D~(x~13)=0
or 18z —4y —x — 13 =10.

Not regular when u = 0.

@) ®m O @ @ G

The vector m = (cos v siny, sinv sinu, cosu) = {x, y, 7).

The surface is the unit sphere centered at the origin.
8 == ~(sinvi — (cos v)k; the surface is a cylinder.

{2) x =xo +(y = yo)(3h/8y)(»0, z0) -+ {z — 20)
{(8h/82)( ¥, z0) describes the plane tangent to
x = h{y, z} at (xn, o, 20), X0 = h{ ¥g, Zg).

(b) » = o+ (x — x0)(8k/x)(xp, 20) + (z — z0)
{8k /82)(x0, z0)

z—6x —8y+3=0

(a) The surface is a helicoid. It looks like a spiral ramp

winding around the z axis. (See Figure 7.4.2.) It
winds twice around, since 4 goes up fo 4.

(B 1= %1/~ +rD(siné, — coss, r)

() yox ~ xop +{xg + ¥z = (xf + )0,

{d) If (x0, o, 20) = (rp, cos Go, o sindy, g), then
representing the line segment in the form

{(r cos by, rsindy, 65)10 < r < 1} shows that the
ling lies in the surface. Representing the line as

{{xg, tvp, 2|0 <1 < 1/{xé" +y§)} and substituting

into the results of part (c) shows that it Lies in the
tangent plane at (xq, ¥, z¢).

{a) Using cylindrical coordinates leads to the
parametrization

®(z, 0} = (/25 + z2 cosd,

—0o<z=<oo,0<8 <2
as one possible solution.

(0) m={~25 4+ 27 cos6, /25 + z%sind, —2)/+/25 + 272

(¢} xpx + yoy =25

(d) Substitate the coordinates along these lines into the
defining equation of the surface and the result of

part (¢}

25 + z%sind, z),

21, (a)

(0

()

{d)
23. @

Wb o, 0 v, ue,and v ks v?allmap R
onto |,

Ty x Ty = (0,0, 1) for €1, and this is never 8. For
the surface @), T, x Ty = 9u?v3(0, 0, 1), and this
is 0 along the » and v axes.

We want to show that any two parametrizations of a
surface that are smooth near a point will give the
same tangent plane there. Thus, suppose

& DCR - R and¥: B CR? — B3 are
parametrized surfaces such that

B(ug, v) = (x, yo, z0) = Y50, 1) {1

and
(TS’ * Tﬁ)) ’(ug,vo) # 6

and (T x| 0 (@)

s0 that € and ¥ are smooth and ene-to-one in
neighborhoods of (ug, vg) and (sq, o), which we
may as well assume are D and B. Suppose further
that they “describe the same surface,” that is,
D( ) = ®(B). To see that they give the same
tangent plane at (xg, yo, 20), show that they have
parallel normal vectors. To do this, show that there
is an open set C with {up, vg) € C C Danda
differentiable map 7: C — B such that ®(u, v) =
W(f{u, v)) for {u, v) € C. Once you have done
this, computation shows that the normal vectors are
refated by Ty x T9 = [8(s, 1)/0(u, )JTY x TY.
To sce that there is such an £, notice that since
T“f X Tf‘ s (), at least one of the 2 x 2
determinants in the cross product is not zero.
Assume, for example, that

ax 3y
os  ds
: 0.
idx By 7
8t B

Now use the inverse function theoreni to write (s, £)
as a differentiable function of (x, y) in some
neighborhood of (xg, vo).

No.

We ping the parametrization into the left hand side
of the equation, and stmplify:

(Vx4 32 = Ry 4

= (\/((R +rcosu) cos v)? 4 (R 4 r cos i) sin)?

— R 4 (r sinu)?
={(/(R+rcosu)? — R +r2sin?u
e (R4reosu — R +r2sinu
= (reosu) +rsiny

=r




Lo
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(b} We calculate the associated normal element 23, w(a+ BT+ m(b - a)

Ty X Ty = {—rcoesu cosv(R +r cosu),
—rcosusinv(R +rcosu),
—F sinu{ R + 7 cosu})

25, %(9\/5 ~ 82+ 1)

27, With f(x, ¥) = VR2 —x2 ~ 2, () b
and find that it is not equal to the zero vectos for any th ) A% =2 = 3%, (4) becomes

choice of (x, v). 5 5
x-+p
A(ST) = A dx
( ) [[B Rzmxg__yg"ﬁ"l dy

Section7.4

R
Lo =

3. g-nwi +iog(l + /2]

dx dy,

where D is the disc of radius R. Evatuate using polar
coordinates, noting it is improper at the boundary, & get

5. (a) (e*sinw, —e¥ cos v, e*) 17 R
b
®) x+z= 3
(¢} mv2{e—1) Section 7.5 .
512
V21 _ L ==
T3
3. 1114

1
9. ~7{6v6—~8)
3 5. (a) For this swface parameterized by &, we have:

11. The integral for the volume converges, whereas that for ey =)~ (u— vy

the area diverges.
¢ eI = (1% + 2uv + uz) —(u® — 2up+ vz}

13, A(E) / - f i =
* - o o = 4z.

V@22 sin? ¢ cos? ¢ + bR s ¢ cos? 6 + a?c? sin' ¢ sin @ d 0

{(b) 0
15. (7/6)(5/5 ~ 1) . VIS
17, (w/2)v/6 o
9 na’

19. 44/3; for fixed 6, {x, ¥, z) moves along the horizontal
line segment y = 2x, 7 == & from the z axis out to a
radius of /3| cos 6| into quadrant 1 if cos @ = 0 and into 11 (a) V22 R? (b) 27 &
quadrant 3 if cos & < 0.

¢

13. © (i}ﬁ _1.)

4% 3 +15

15, 162 R%/3

o I7. (a} The sphere looks the same from all three axes, so
PP these three integrals should be the same quantity
- with different labels on the axes.

(b) 4w R*/3
oy dmR/3

i%. 8

2L (m+/m ~ D 21. (R/2, R/2, R/2)




23

25,

27.

Answers fo Odd-Numibered Exercises

(a) Directly compute the vector cross product T, x Ty
and then calculate its length and compare your
answer to the left-hand side.

(b) Inthis case, F =0, so A(s) = ffD V EG du dv.
(¢) dmra?

Leta = 8x/8u, b = 8y/0u, ¢ = dx/dv, and

d = dy/8v. The conditions (a} and (b} in Exercise 16
are then a® + 5% = ¢* 4 42 and qc + bd = 0. Show that
@ # 0 and, by a normalization argument, show that vou
can assume a = 1. Now calculate further.

202

Saction 7.6

1.

11.

13.

15.

17.

19.

21.

sm

2
(a) 18w (b) 36m
+48x (the sign depends on orientation).
4
27 (or -2, if ybu choose a different orientation).
Zm

12m/5

With the usual spherical coordinate parametrization,
Ts x Ty = —sing r (see Example 1). Thus,

f/?-dS://F-(T¢ x To)d¢ ds
N
= ff(F-r)sinqﬁdqﬁdH
2x 9t
=/ [ F.singpde d6
o JO

2 b4
//de [ / 1 sing de do.
JE JOo U8

For a cylinder of radius R == 1 and normal component 7.,

b in
//F-dSu/ / F dedz.
JJE da JO

and

It

2m/3

2
§a3bcn

Section 7.7

-

. Apply formula (3) of this section and simplify; K = ¢
and K = —b?/(u® + B2

3. Apply formula (3) of this section and simplify.

K= —4g5p0
T {a*bt 4 4bt? + 4gT2)2

7. Using the standard parametrization of the ellipsoid
D{u, v) = (acosusiny, asinusiny, ceosv), u €
[0, 2x7], v € [0, w], from Exercise 6 you should have
found that the Gauss curvature of the eilipsoid is:

a*e?

K o=
(a* cos? v + a2¢? cos? u sin® v + a%c? sin® u sin? v)?

ate?

(a* cos? v +a?c? sin® v)?

Then, the area area element for the elfipsoid is given as:

T, % T, = sin v\/a"* cos? v + a2e? sin® v,

This yields the integral:

* o a*c? sinv
— dudu.
0 Jo  (a%eos? v+ et sin® v)3

To evaluate this integral, we try to get it into one of the
standard forms found in the tables contained in the text:

T 2 4.2
atcsiny
/ -/ = dudv
Jo Joo (a*cos? v+ a?e? sin vyl

i a*c? sinv
=2 rdv
o a¥a? cos? v+ 2 sin® )3

F:d S
sin v
zQJraclf = dy
¢ (a%cos?y + (1 —cos?u)?

7 .
sinv

mZJmczf T

o ((a® — D cos?u 4 )2

2ract * sin v
= 5 +dv.
(‘22 - 52}5 0 ( ot ) z

dr

cos? v+

At this point, make the substitution w = cos v

2ract ]” sine v
7 dv
(@2 -1 Jo (

2
cos? v 5%_;5)

[

_ 2ract ! i dw.

2. )L 2
@ =e o+ (

Tl

o7
gz




Finally, use the trigonometric substitution

W o= 559:55 tan & to finish the integration. The fina}
solution will simplify to 47, verifying the
Gauss-Bonnet theorem.

9. Apply formula (3} of this section and simplify.

11. Apply formula (2) of this section and simplify;
K = —hr"/[(1 + (k)5 2h].

Review Exercises for Chapter 7
1 (a) 34201 —e57)/13

b —~m/2/2
(c) (236, 158+/26 — 8)/35 . (25)3
(d) 8/2/189
3. (@ w2_+1 by —1/2
pig
5. 243

7. .(a) A sphere of radins 5 centered at (2, 3, 0);
(0.0} =(2+5cosdsing, 3+ Ssind sing, 5
€059y, 0 <8 <2m;0< ¢ <.

(b) An ellipsoid with center at (2,0, 0%

¥(6, ¢) = (2 + (1/+/2)3 cos O sin ¢,
3sinfsing,3cos¢p);0<6 <27, 0< ¢ < 7.

(c) An elliptic hyperboloid of one sheet;

i
B0, 2) = (21\/8 +2:2cos6, /8 + 222 siné‘,z);

0<8 <2n, —00 <z < 0.

1 .
9, A(®) = 3 fgz” V3 cos? 6 + 5d0; & describes the upper
nappe of a cone with elliptical horizontal cross sections,

11, 1:./3/6
13, V273
15, 5./5/6

i7. (2) (&’ cosmz, xe¥ cosmz, ~mxe sinwz)
by 0

19, %(ez +1)

21 n=(1/V3)0—=1,0,2),22 = x = 1

23. 0

25. IfF= Vg, then V x F = 0 (at least if ¢ is of class C%;
see Theorem 1, Section 4.4), Theorem 3 of Section 7.2
shows that fc V¢ -ds = 0 because ¢ is a closed curve.

Answers to Odd-Numbered Exercises | §IF

27, (a) 24x (b} 24z {©) 60m

29. (@) [V R+ pzp —z))/p
() \/2z0(RE + p%)/ plg

Chapier 8
Section 8.1

(2t=1,-t+1), refo, 1}
Loy(ty=¢ (2~1,2-2), te1,2]

(4t + 11, ~1 +4), t € [2, 3]

7. 61
9. -8

11. (a) 0
(b) —mR?
() 0
(d) —mR?

13, 3wa?

15, 3z/2

17, 37w(b* — a?)/2

18. (a) Beth sides are 27, () &

2L 9

23. mab

25. A horizontal line segment divides the region into three
regions of which Green's theorem applies; now use
Exercise 16 or the technique in Figure 8.1.5.

27. 9r/8

29, Ife > 0, thereisaé > 0 such that u(q) —u(p) < ¢ *

whenever [ip — qll = p < 8. Parametrize 38,(p) by
4(€) = p + p(cos 8, sin#). Then

2
Hip}—2mu(p) < / [u(q(8)) — u(p)idé < 2m.
0




[

S BRB

31,

33.

35,

Answers to Odd-Numbered Exercises

Ifp = (p1, p2), parametrize 8 8,{p) by

p i {p1 + peosf, pr 4+ psind), then

I{py = fozjr u(pi + pcosd, pp + psind) dé.
Differentiation under the integral sign gives

dI m 2
:/ Vu-(cosl?,sinﬁ)dé)z/ Vu-ndf
0 o

ds
1 3
-/ -fidmi// V2 dd
£ Jap, 00 £ JJn,

(the last equality uses Exercise 30).

Using Exercise 32,

i R 2
f/ ud4 =f / ufp + plcos8, sin®]p dd do
J By o 46
R
/ f uds idp
0 85

2

: R
= f 2mpu(p) dp = 7w R*u(p).
o Jo

Suppose ¥ is subharmonic, We establish the assertions
corresponding to Exercise 34(a) and (b). The argument
for superharmonic funcitons is similar, with inequalities
reversed,

Suppose V2u > 0 and w(p) > u(q) for all q in
Br(p). By Exercise 31, I'(p) = 0 for 0 < p < R, and
50 Exercise 32 shows that 2xu(p) < I{p) < I(R) for
0 <p < R Ifulg) < u(p) for some q = p +
p{cos By, sinfig) € Bp(p)}, then, by continuity, there is
an arc {fiy — 8, Oy + §] on §B,(p) where v < u(p) —d
for some d > . This would mean that

1 s 4
2ru(p) = H{py=— / ulp + p(cosd, sind)jo dé
P Jo

< (27~ 28)u(p) + 28[u(p) ~ d] < 2mulp) — 2.5d.

This contradiction shows that we must have u(g) = u(p)
for every ¢ in Bg{p).

If the maximurm at p is absolute for D, the last
paragraph shows that u(x) = u(p) for all x in some disc
around p. i ¢: {0, 1) — D is a path from p to q, then
w(e(2)) = u(p) for ail ¢ in some intervai [0, b). Let &y be
the largest b < [0, 1] such that u{e(#)) = u(p) for all
r € [0, &), {Strictly speaking, this requires the notion of
the least upper bound from a good calculus text.)
Because u is continuous, u{c(bg)) = u{p). If by # 1,
then the last paragraph would apply at efbg) and ¥ is
constanily equal te u{p) on a disc around e(bg). In
particular, there is 2 § > 0 such that u(c(r)) = wie{by)) =
u(p) on [0, by + &). This contradicts the maximality of
bg. so we must have by == 1. That is, e{q)} = e(p).
Because g was an arbitrary point in D, # is constant
on D.

37.

Assume V2u; = 0 and Vzuz == (} are two solutions. Let
@ = 1wy ~ uy. Then V3¢ = 0 and @{x) =0 for al}

x € 8D Consider the integral fff) OV dd =

~ ([, Ve Védd Thus, [[, VoV dd =0, which
mmplies that V¢ = 0, and so ¢ is a constant function and
hence must be identically zero.

Sechon 8.2

13,
15,
17.
19,

21

23.

25,

(3t~ 1,1, —6r +4), te[0,1]
(2,2t — 1, —61+4), refl,2]
(=3t +8,3,10f — 28), t & [2, 3]
(—1, =2t +9,2t — 4), 1 € [3,4]

S, ) =(u,v,5~2u 30, uel-1,2Lveil,3]

yity=

¢ (Note: F is a gradient field.)

Each integral in Stokes’ theorem is zero.
0

~4n (/3

0

+27

Using Faraday’s law, [[[V x E + 8H/37]-dS = 0 for
any surface S. If the integrand were a nonzero vector at
some point, then by continuity the integral over some
small disc centered at that point and Iying perpendicular
to that vector would be nonzero.

The orientations of 38; = 3.5 must agree.

Suppose C is a closed loop on the surface drawn so that
it divides the surface inte two pieces, 57 and S, For the
surface of a doughnut (torus) you must use two closed
loops; can you see why? Then C bounds both §) and S3,
but with positive orientation with respect to one and
negative with respect to the other. Therefore,

//VxF-dS //VxF-dS+//VxF-dS
M S S
/F-a’s%/F-a’s:O.

C C

G
e

L
thia e




27,

29,
3.
33,
35,

(@) HC=35, fveds= [[(Vxv) dS=
Jf50-ds =0

b foveds= [Pv.citydi=v- [P () dr =
v-{e{b} — e(a)), where ¢ {g, b] -> B3 isa
parametrization of . (The vector infegral is the
vector whose components are the integrals of the

component functions.} If C is closed, the last
expression is 0.

Both integrals give m/4,
{a) 0 (c)

=207 (or 207 if the opposite orientation is used).

) =

One possible answer; The Mabius curve C is also the
boundary of an oriented surface §; the equation in
Faraday’s law is valid for this new surface.

Section 8.3

1.

it.

13.

15,
17.

19.

(@) f=x?/24224+C
(b} F isnot a gradient field.

1
(c) fm§x3+xy2+C

(8} There exists such a (&, but no such g.
(d) There exists such a g, but no such G.
{¢) There exists such a g, but no such G.
{d} Neither function exists.

» IfF = Vi = Vg and C is a curve from v 1o w, then

(f =)W~ (f ~g)V) = [, V(f —g) -ds = Gand

s¢ f — g is constant.
x¥%yz e~ cosx + O

Yes, it is the gradient of g(x, ¥) = F(x) + F{ ), where
Flixy = f(x).

Ney Vx F=(0,0,—x) 0.

1

ni+ e
sm e A
¢ 3¢ 73

3.5 % 107 ergs

@ flx,p,2)=x%yz
{b) Not a gradient field.
(¢} Not a gradient field.

(d) flx, ¥ 2) =x%cosy

Use Theorem 7 in each case.

(a) —3/2 (b) ~1
(c} cos(ez)w-cos(l/e}/e

21. (a)
)

Answers to Odd-Numbered Exerclses

No.

I, 2
(24 JXY 2% y) or

i 1
<§zz — 2xyz - Eyz, —x%z -z, G).

1
23. ~3—(z3i + 3%+ 17k}

25. (—zsiny + ysinx, xz cos y, 0) (Other answers are
possible.)

27. (a)
(b}

(c)
29, (a

(&)

VxF=(0,0,2) 0

Let c(z) be the path of an abject in the fluid. Then
Fle(t)) = e'(t). Let e(t) = (x{r), ¥(1), z(£)}. Then
¥ = —y, ¥ = x, and z" = 0, and so 2 is constant
and the motion is paralle] to the xy plane. Also,
x"4x=0,y"+y =0 Thus,x = Acost + Bsins
and y = Ccos7 + D sifi ¢. Substituting these values
inx"==—y vV =x wegetC=—B, D=4, 50
that x° + 12 = 42 + B2 and we have a circle.

Counterclockwise.

— GmM _

=T

T g e
(x2 432 + 25572

V.F = —GmM{

x2 + 32 422 —3y2
(x2 +y2 +ZZ)5/2

x2+y2+22__322
(xz + J}2 +22)5/‘2 J
= ()
Let § be the unit sphere, Sy the upper hemisphere,
55 the lower hemisphere, and C the unit circle. If
F =V xQG, then

//F-dS:// F~dS+/jF-dS
8§ 8 S
=fG-ds—fG-ds:=0.
c C

But [[oF-dS = —GmM [ (r/{r]®)-ndS =
—4m GmM, because Ir}f = 1 and r = n on §. Thus,
¥ = V x G is impossible. This does not contradict
Theorem 8 because F is not smooth at the origin.

Section 8.4

1.3

3. 4

8, 4w

7.3




11.

13.

15,

17.

19.

21.

23.

Answers to Odd-Numberad Exercises

(ay 0
(b} 4/15
(c) —4/15

6
7

10
1

Apply the divergence theorem fo f F using
Ve(fF)=Vf-F+ fV-.F.

¥ =r/r? then V.- F = 1/r2. I (0,0, 0) & <, the
result follows from Gauss’ theorem. If {0, §, 0) € £, we
compute the integral by deleting a smail ball

By = {(x, ¥, 23H{x* + 37 + 2512 < ¢} around the
origin and then letiing £ — 0:

/f dem111n1t/f/ —-—-dV.—hrmt// E.—;!—JS
0SS e T 0 sy T

([ oo [ s
e—0 ag ¥ 48, »2
limmit / ———~dS dre

20

[ mras

The integral over d B, is obtained from Theorem 10
(Gauss’ law), because » == ¢ everywhere on B,.

Use the vector identity for divi /F) and the divergence
theorem for part (a). Use the vector identity

V- (fVg—gV[)= fVig~gV?f forpart (b).

(a) Ho(py = [[], pl@)/(4rllp - g}V (q), then

Vo(p) = /f . Lotg)/armiVp(i/ip — g dVia)

- / f [o(g)/4m1i(p ~ @)/1p — @i’ 1dV{g),
W

where Vp means the gradient with respect to the
coordinates of p and the integral is the vector whose
components are the three component integrals. If p
varies in ¥ U 8V and m is the outward unit normal
to ¥, we can take the inner product using these
components and coilect the pieces as

plg) 1
Voip)-n=—~ //f i p= qw(p qr-ndV(g).

25,

Thus,

// Vo(pl-ndV(p) = - //
av . g
JJ] - wenaa) v

There are essentially five variables of integration
here, three placing q in # and two placing p on ¥,
Use Fubini’s theorem: to obtain

]/ Vg -n-dS
ar
o{q) {P—qi'n
— 48 d R
/ff / w o= qF PP

If ¥ is a symmetric elementary rcglon Theorem 10
says that the inner integral is 4 if g € ¥ and 0if
q & V. Thus,

/[ Vé-ndS = — /// gy dVig).
Jav . SN

Because p = 0 outside W,

// Vd}-ndSm—/// Pl dVig).
av ¥

If ¥ is not a symmetric elementary region,
subdivide it into a sum of such regions. The
equation holds on each piece, and, upon adding
them together, the boundary integrals along
appropriately oriented interior boundaries cancel,
leaving the desired resuit.

(b) By Theorem 9, [f,, Vé - dS = [If, v*¢av, and

so f[f, Vipdv =~ [{f, pd¥. Because both o

and V¢ are continuous and this holds for
arbitrarily smafl regions, we must have V24 == -

H the charge ¢ is spread evenly over the sphere § of
radius R centered at the origin, the density of charge per
unit area must be () /4 RZ. If p is a point not on S and
g € 5, then the contribufion to the electric field at p due
to charge near q is direcied along the vector p - 4.
Because the charge is evenly distributed, the tangential
component of this contribution will be canceled by that
from a symmetric point on the other side of the sphere at
the same distance from p. {Draw the picture.) The total
resulting field must be radial. Because S looks the same
from any point at a distance [|p}| {rom the origin, the
field must depend only on radius and be of the form

= f(rr.




Answars to Odd-Numbered Exercises * 533

If we Iook at the sphere T of radius ||p}l, we have 7. (a)
Formy (@V1 + V2} = Formg (wd] + 42, a By + By, aCi+C)
.y =(aA; + Az)ydvdz + (@ By + By) dz dx
charge inside ¥) = E-dS = ; r-ndS
(charg ) fL f/}:mpn) PR,
= AP Ipl area = = 47 ) £ (lip. = oldidydz + By dz di+ Cy d dy)

+ (A2 dydz + By dz de+ Cy dx dy)

If p}} < R, there is no charge inside 3:if|pl| > &, the = & Formy (V1) + Formp( V).

charge inside ¥ is O, and so

(b)

34 94 34
0 . do = | — dr+ = dy+ ~~dz | Adx + Aldx)?
s=e—=p # lpl=R éx By dz
E(p) = { “7 Ip} |
. o8 3B 3B i
0 it fipll < R. = —dy 4+ — z L
+ " dx -+ p» dy + = dz | Ady + B(dy) 3
27. By Thfeorem 10,_ f_faMFde = 4 for any surface + I dx + ac &y + ac dz | Adz+ C(dz)?
enclosing the origin. But if F were the curl of some field, ax ay az |

then the integral over such a closed surface would have £

to be 0. But ( dx)? == () = (dz)? = dx A dx = dy r dy=
dendz=0,dyndx=—dindy, dindy=
~dy A dz,and dx A dz = —dz A dx. Hence,

29. IfS= oW, then [f;r-ndS = [[[, V-rdV =
S [ 34V = 3 volume (W), For the geometric

explanation, assume (0, 0, 0) € W and consider the de = ( E - iﬁ) dydz + (% - E) dz dx
skew cone with its vertex at (0, 0, 0) with base AS and ‘ dy 0z 8z dy [
altitude {r). Its volume is ~{AS)(r- n). 3B 84 :
9x 9y
Section 8.5 = Formg (cwl V),
9. An oriented |-manifold is a curve. Its boundary is a pair
1. (@) (2xy* — yx¥) dx dy of points that may be considered a G-manifold. Therefore,
by (x%+ ) dx dy @ is & O-form or function, and f, . dw = w(b) ~ w(a)
(©) (x2 + yz + Zz) dx dy dz if the curve M runs from a to b, Furthermore, dw is the

t-form (8w /3x) dx + (dw/8y) dy. Therefore, [, dw is
2 M
(@) Gy +x%) dx dy dz : the line integral [, (9/3x} do + (de/ dv) dy =
{e) dxdyd:z f ar Y@+ ds. Thus, we obtain Theorem 3 of Section 7.2,

Jiy V- ds = o(b) — w(a).

3. () 2xy dx+ (x2+ 30 dy

() —(x + y*sinx) dx dy : 1. Putw = F dx dy+ Fydydz + Fs dz dx. The integral
(Y (25 +y) dx dy becomes
(@ dxdvis

= dw
(e} 2x dxdydz f/a:"w //L

(f} 2vdydz — 2xdz dx

aF  8Fy  3F
()..__ijf,:li,,_dxd = ":'"“l*"l-——i-{——,-"i dx dy dz.
g (x2 + 212 y r\ 0z dx ay

(h) 2xy dx dvd:z

{a) O
4473 7% 375 ‘
5. () 8:r2+——~§:w+1; +—7§_ (b) 40
44r3 537t ganwS RS o7 13. Consider w = x dyde + ydz dx + 7 dx d
2 A - Cor ly ydz z dx dy.
(b) 8=+ 3 + 2 + 5 3 * 7 (liornpute thatldw=3dxdydz, so that
4 5
(c) 8fr+10n2+93r3~f~§~g—+-j—r5— §’ffa}ew= "jfff}e dm:fffR dxdydz = v(R).




Answers 1o Odd-Numberad Exercises

Review Exercises for Chopter & 15, 8x/3
1. {(a) 2ma® 17. ndt/4
)y &
19, 2}
3.0

21. (a) G is conservative; F is not.

5. (1) f=x%/4-x%
’ v {b) G= vqu;:<x4/4)+(y4/4}—%xzy2+%z2+c,

by —1/4

0 / where C is any constant.

j 7. (a) Check that V x F = 0. e dseo [ Gd i

: by f=3xiycosz+C (C)]a ras=E =T

(c) 0 1 1

: Fods= o G- ds= -7
9, 23/6 g "

23. Use (V- F)(x0. Y0, 20) =

i
. ; , iimitpw,o—-—wy S f/ F-nd$ from Section 8.4,
13, (a) VS = 3ye” i+ 3xe’ + bxyze® K () J Jsa,

® 0
(c) Both sides are 0.

- 11. No: V x (g x r) = 2a.




