Math 550, Exam 1, Spring 2013
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. CIRCLE your answer.
CHECK your answer whenever possible.
No Calculators or Cell phones.
The solutions will be posted later today.

1. (9 points) Compute $\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) d x d y$. Explain very carefully what you are doing.
2. (9 points) Let $f(x)$ be a continuous function for $a \leq x \leq b$. Find a formula which relates $\left(\int_{a}^{b} f(x) d x\right)^{2}$ and $\int_{a}^{b} \int_{x}^{b} f(x) f(y) d y d x$. Explain why your formula is correct very carefully.
3. (8 points) A lumberjack cuts a wedge-shaped piece W out of a cylindrical tree of radius a by making two saw cuts. The first cut is parallel to the ground. The second cut makes an angle θ with the first cut and meets the first cut along a diagonal of the circle that contains the first cut. Find the volume of W. Explain very carefully what you are doing.
4. (8 points) Let $f(x, y, z)$ be a continuous function which is defined on all of three space. Let a, b, and c be constants. Consider the function $F(x)=\int_{c}^{x} \int_{a}^{b} f(x, y, z) d y d z$. Find an expression for $\frac{d}{d x} F(x)$ in which all differentiation is done before all integration. Explain very carefully what you are doing.
5. (8 points) Find a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which carries the parallelogram with vertices $(0,0),(a, b),(c, d),(a+c, b+d)$ to the parallelogram with vertices $(0,0),(e, f),(g, h),(e+g, f+h)$. (You may assume that both parallelograms are honest-to-goodness parallelograms.) Explain very carefully what you are doing.
6. (8 points) What is the area of the parallelogram with vertices $(0,0),(a, b)$, $(c, d),(a+c, b+d)$? (You may assume that the parallelogram is an honest-togoodness parallelogram.) Explain very carefully what you are doing.
