There are 20 problems. Each problem is worth 10 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

1. Is $\boldsymbol{c}(t)=(\sin 2 t, \cos 2 t)$ a flow line of the vector field $\overrightarrow{\boldsymbol{F}}(x, y)=(y,-x)$?
2. Find the equations of the line tangent to the curve traced out by $\boldsymbol{c}(t)=\left(t^{3}+1,4 t^{2}, 5 t\right)$ at $t=2$.
3. Find the length of the curve traced out by $\boldsymbol{c}(t)=(2, t-2 \pi, t)$ for $2 \pi \leq t \leq 4 \pi$.
4. Find the volume of the region between $z=x^{2}+y^{2}$ and $z=32-x^{2}-y^{2}$.
5. Find $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$.
6. Find the equation of the plane which contains $(3,0,5),(1,1,1)$, and $(2,3,4)$. Be sure to check your answer.
7. Find the equations of the line which contains $(1,2,4)$ and $(7,8,9)$. Be sure to check your answer.
8. Find the intersection of $\frac{x+2}{3}=\frac{y-3}{4}=z+1$ and $x-2 y+3 z+7=0$. Be sure to check your answer.
9. Find the equation of the plane which is tangent to $z=x^{2}+y^{2}$ at $x=1$ and $y=2$.
10. Suppose that $\overrightarrow{\boldsymbol{c}}(t)$ is a path with constant speed. Prove that this path has the property that velocity is always perpendicular to acceleration.
11. Let $w=f(x, y, z)$. View the rectangular coordinates (x, y, z) in terms of the spherical coordinates (ρ, ϕ, θ). Express $\frac{\partial w}{\partial \theta}$ in terms of $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}, \rho, \phi$, and θ.
12. Consider the function $f(x, y)=x^{2}-y^{2}$.
(a) Graph the level set of value 9 for this function.
(b) Calculate $\left.\vec{\nabla} f\right|_{(3,0)}$. Graph $-\left.\frac{1}{10} \vec{\nabla} f\right|_{(3,0)}$ on your graph of part (a) starting at $(3,0)$.
(c) Calculate $\left.\vec{\nabla} f\right|_{(5,4)}$. Graph $-\left.\frac{1}{10} \vec{\nabla} f\right|_{(5,4)}$ on your graph of part (a) starting at $(5,4)$.
13. Compute the equation of the plane tangent to the surface parametrized by $\boldsymbol{\Phi}(u, v)=\left(u^{2} \cos v, u^{2} \sin v, u\right)$ at $u=1$ and $v=0$.
14. Find the area inside $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
15. Evaluate $\iint_{\underline{S}}(\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}) \cdot d \overrightarrow{\boldsymbol{S}}$ where S is the surface $x^{2}+y^{2}+3 z^{2}=1, z \leq 0$,
16. Find $\int_{\boldsymbol{c}}(3 y+x) d x+(8 x-15 y) d y$, where \boldsymbol{c} is the path that starts at $(1,0)$; travels along the x-axis to $(2,0)$; travels in the upper half plane along the circle with center $(0,0)$ and radius 2 to $(-2,0)$; travels along the x-axis to $(-1,0)$; and travels in the upper half plane along the circle with center (0,0) and radius 1 back to $(1,0)$.
17. Compute $\int_{\boldsymbol{c}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{s}}$, where $\overrightarrow{\boldsymbol{F}}=2 z \overrightarrow{\boldsymbol{i}}+x \overrightarrow{\boldsymbol{j}}+3 y \overrightarrow{\boldsymbol{k}}$ and \boldsymbol{c} is the ellipse that is the intersection of $z=x$ and the cylinder $x^{2}+y^{2}=4$.
18. Let D^{*} be the parallelogram, in the $x y$-plane, with vertices $(0,0)$, $(2,-1),(3,2)$, and $(1,3)$. Let D be the square

$$
\{(u, v) \mid 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1\} .
$$

Find a one-to-one function T from the $x y$-plane to the $u v$-plane such that D is the image of D^{*} under T.
19. Let $T(u, v)=(x(u, v), y(u, v))$ be the mapping defined by $T(u, v)=(u, v(1+u)))$. Let D^{*} be the rectangle

$$
\{(u, v) \mid 0 \leq u \leq 1 \text { and } 1 \leq v \leq 2\}
$$

Find $D=T\left(D^{*}\right)$ and evaluate $\iint_{D}(x-y) d x d y$.
20. What is the distance from $(1,1)$ to $3 x+2 y=1$?

