There are 20 problems. Each problem is worth 10 points. SHOW your work. \overrightarrow{CIRCLE} your answer. **NO CALCULATORS!**

- 1. Is $\boldsymbol{c}(t) = (\sin 2t, \cos 2t)$ a flow line of the vector field $\overrightarrow{\boldsymbol{F}}(x, y) = (y, -x)$?
- 2. Find the equations of the line tangent to the curve traced out by $\boldsymbol{c}(t) = (t^3 + 1, 4t^2, 5t)$ at t = 2.
- 3. Find the length of the curve traced out by $\boldsymbol{c}(t) = (2, t 2\pi, t)$ for $2\pi \le t \le 4\pi$.
- 4. Find the volume of the region between $z = x^2 + y^2$ and $z = 32 x^2 y^2$.

5. Find
$$\int_0^1 \int_x^1 e^{y^2} \, dy \, dx$$
.

- 6. Find the equation of the plane which contains (3,0,5), (1,1,1), and (2,3,4). Be sure to check your answer.
- 7. Find the equations of the line which contains (1, 2, 4) and (7, 8, 9). Be sure to check your answer.
- 8. Find the intersection of $\frac{x+2}{3} = \frac{y-3}{4} = z+1$ and x-2y+3z+7=0. Be sure to check your answer.
- 9. Find the equation of the plane which is tangent to $z = x^2 + y^2$ at x = 1 and y = 2.
- 10. Suppose that $\overrightarrow{c}(t)$ is a path with constant speed. Prove that this path has the property that velocity is always perpendicular to acceleration.
- 11. Let w = f(x, y, z). View the rectangular coordinates (x, y, z) in terms of the spherical coordinates (ρ, ϕ, θ) . Express $\frac{\partial w}{\partial \theta}$ in terms of $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, $\frac{\partial w}{\partial z}$, ρ , ϕ , and θ .
- 12. Consider the function $f(x, y) = x^2 y^2$.
 - (a) Graph the level set of value 9 for this function.
 - (b) Calculate $\overrightarrow{\nabla} f|_{(3,0)}$. Graph $-\frac{1}{10}\overrightarrow{\nabla} f|_{(3,0)}$ on your graph of part (a) starting at (3,0).
 - (c) Calculate $\overrightarrow{\nabla} f|_{(5,4)}$. Graph $-\frac{1}{10}\overrightarrow{\nabla} f|_{(5,4)}$ on your graph of part (a) starting at (5,4).
- 13. Compute the equation of the plane tangent to the surface parametrized by $\mathbf{\Phi}(u, v) = (u^2 \cos v, u^2 \sin v, u)$ at u = 1 and v = 0.

14. Find the area inside $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

15. Evaluate $\iint_{S} (\overrightarrow{\nabla} \times \overrightarrow{F}) \cdot d\overrightarrow{S}$ where S is the surface $x^2 + y^2 + 3z^2 = 1$, $z \leq 0$,

- 16. Find $\int_{c} (3y+x) dx + (8x-15y) dy$, where **c** is the path that starts at (1,0); travels along the x-axis to (2,0); travels in the upper half plane along the circle with center (0,0) and radius 2 to (-2,0); travels along the x-axis to (-1,0); and travels in the upper half plane along the circle with center (0,0) and radius 1 back to (1,0).
- 17. Compute $\int_{\boldsymbol{c}} \overrightarrow{\boldsymbol{F}} \cdot d\overrightarrow{\boldsymbol{s}}$, where $\overrightarrow{\boldsymbol{F}} = 2z \overrightarrow{\boldsymbol{i}} + x \overrightarrow{\boldsymbol{j}} + 3y \overrightarrow{\boldsymbol{k}}$ and \boldsymbol{c} is the ellipse that is the intersection of z = x and the cylinder $x^2 + y^2 = 4$.
- 18. Let D^* be the parallelogram, in the xy-plane, with vertices (0,0), (2,-1), (3,2), and (1,3). Let D be the square

$$\{(u, v) \mid 0 \le u \le 1 \text{ and } 0 \le v \le 1\}.$$

Find a one-to-one function T from the xy-plane to the uv-plane such that D is the image of D^* under T.

19. Let T(u, v) = (x(u, v), y(u, v)) be the mapping defined by T(u, v) = (u, v(1+u)). Let D^* be the rectangle

 $\{(u, v) \mid 0 \le u \le 1 \text{ and } 1 \le v \le 2\}.$

Find $D = T(D^*)$ and evaluate $\iint_D (x - y) dx dy$.

20. What is the distance from (1, 1) to 3x + 2y = 1?