There are 10 problems. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!

- 1. Find the equation of the plane which contains (0,0,0), (1,1,1), and (2,3,4). Be sure to check your answer.
- 2. Find the equations of the line which contains (1, 2, 4) and (7, 8, 9). Be sure to check your answer.
- 3. What is the distance from (1,1) to 3x + 2y = 1?
- 4. Let $\overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{j}$ and $\overrightarrow{v} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$. Find vectors \overrightarrow{c} and \overrightarrow{d} so that $\overrightarrow{c} + \overrightarrow{d} = \overrightarrow{u}$, \overrightarrow{c} is parallel to \overrightarrow{v} , and \overrightarrow{d} is perpendicular to \overrightarrow{v} . Be sure to check your answer.
- 5. Write $z = x^2 y^2$ in special coordinates.
- 6. Draw three level sets for $f(x,y) = \sqrt{100 x^2 y^2}$.
- 7. Find $\lim_{x \to 0} \frac{\cos x 1}{x^2}$.
- 8. Find $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$. (If the limit does not exist, be sure to explain why it does not exist.)
- 9. Find $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2+2}$. (If the limit does not exist, be sure to explain why it does not exist.)
- 10. Find the intersection of $\frac{x+2}{3} = \frac{y-3}{4} = z+1$ and x-2y+3z+7 = 0. Be sure to check your answer.