Use the paper provided. Put your name on the front of the first page and the back of the last page. Each problem is worth 10 points. NO CALCULATORS!

1. Find the mass of a wire of density $\delta(x, y, z)=k z$ if it has the shape of the helix which is parameterized by $x=3 \cos t, y=3 \sin t$, and $z=4 t$, for $0 \leq t \leq \pi$.
2. Evaluate the line integral $\int_{\overrightarrow{\boldsymbol{c}}}\left(x^{2}-y^{2}\right) d x+2 x y d y$, where $\overrightarrow{\boldsymbol{c}}(t)=\left(t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$.
3. Find the work done by the force field $\overrightarrow{\boldsymbol{F}}(x, y)=\left(x^{3}-y^{3}\right) \overrightarrow{\boldsymbol{i}}+x y^{2} \overrightarrow{\boldsymbol{j}}$ as it moves a particle along $\overrightarrow{\boldsymbol{c}}(t)=\left(t^{2}, t^{3}\right)$ for $-1 \leq t \leq 0$.
4. Calculate $\int_{\overrightarrow{\boldsymbol{c}}} y d x+x^{2} d y$, where $\overrightarrow{\boldsymbol{c}}$ is the right angle curve from $(0,-1)$ to $(4,-1)$ to $(4,3)$.
5. Find the work done by the force field

$$
\overrightarrow{\boldsymbol{F}}(x, y)=-K \frac{x \overrightarrow{\boldsymbol{i}}+y \overrightarrow{\boldsymbol{j}}+z \overrightarrow{\boldsymbol{k}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\vec{\nabla}\left(\frac{K}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
$$

as it moves a particle along the straight line curve from $(0,3,0)$ to $(4,3,0)$.

