Use the paper provided. Put your name on the front of the first page and the back of the last page. Each problem is worth 10 points. **NO CALCULATORS!**

1. Compute
$$\iint_D \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 dx dy$$
, where D is the region inside $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$.

- 2. Find the volume of the solid below $x^2 + y^2 + z^2 = 1$ and above $z = \sqrt{x^2 + y^2}$.
- 3. Compute $\iint_D (x+y)^3 e^{x-y} dx dy$, where D is the region bounded by x+y=1, x+y=5, x-y=-1, and x-y=2.
- 4. Compute $\iint_D e^{x^2 + y^2} dx dy$, where D is the region inside $x^2 + y^2 = 1$.
- 5. Let D^* be the parallelogram with vertices at (-1,3), (0,0), (2,-1), and (1,2), let D be the rectangle $D = [0,1] \times [0,1]$. Find a transformation T such that D is the image set of D^* under T.