1. Prove that a regular 7-gon is not constructible.

Answer: A regular 7-gon is constructible if and only if \(\zeta = e^{\frac{2\pi i}{7}} \) is constructible. It is clear that \(\zeta \) is a root of \(x^7 - 1 \). It is also clear that \(x^7 - 1 = (x - 1)g(x) \), where

\[
g(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.
\]

We know that \(\zeta \) is not a root of \(x - 1 \); so, \(\zeta \) is a root of \(g(x) \). We also proved that \(g(x) \) is irreducible because 6 is equal to \(p - 1 \), where \(p \) is the prime integer 7. (Our proof consisted of viewing \(g(x) = f(x - 1) \) for some polynomial \(f(y) \). We used the Eisentstein criteria with \(p = 7 \) to show that \(f(y) \) is irreducible; hence, \(g(x) \) is also irreducible.) At any rate, \(g(x) \) is the minimal polynomial of \(\zeta \). It follows that \(\text{dim}_\mathbb{Q}\mathbb{Q}[\zeta] = 6 \). We proved that if \(u \) is a constructible number then \(\text{dim}_\mathbb{Q}\mathbb{Q}[u] = 2^n \), for some integer \(n \). We know that 6 is not a power of 2 and therefore we conclude that \(\zeta \) is not constructible.