Suppose that the field F is a subring of the ring R. (For example, the field \mathbb{Q} is a subring of all of the following rings: $\mathbb{Q}[x]$, \mathbb{R}, $\mathbb{Q}[i]$, and $\frac{\mathbb{Q}[x]}{I}$ for some ideal I of $\mathbb{Q}[x]$.) Notice that R is automatically a vector space over F. (Recall from your Linear Algebra class that a vector space over the field F is an abelian group V which admits scalar multiplication by elements of F. The scalar multiplication has to satisfy a handful of properties. In our situation, R is an abelian group and it is possible to multiply elements of R by elements of F (even more is possible for us). All of the rules about scalar multiplication in a vector space automatically hold in the ring R.)

1. (a) What is the dimension of the vector space $\mathbb{Q}[i]$ over the field \mathbb{Q}? (You probably should find a basis for $\mathbb{Q}[i]$ over \mathbb{Q}.) In other words, you want a set of elements from $\mathbb{Q}[i]$ which span $\mathbb{Q}[i]$ over \mathbb{Q} and are linearly independent over \mathbb{Q}. Of course, $\mathbb{Q}[i]$ is the smallest subring of \mathbb{C} which contains \mathbb{Q} and i.

(b) Let f be the polynomial $a_1 + a_1 x + \cdots + a_{n-1}x^{n-1} + x^n$ in $\mathbb{Q}[x]$. What is the dimension of the vector space $\frac{\mathbb{Q}[x]}{(f)}$ over \mathbb{Q}?

(c) Suppose that $E \subseteq F \subseteq K$ are fields and that u_1, \ldots, u_n is a basis of F over E and that v_1, \ldots, v_m is a basis of K over F. Prove that $\{u_i v_j | 1 \leq i \leq n, 1 \leq j \leq m\}$ is a basis for K over E.

(d) Let $\mathbb{Q}(\sqrt{2}, i)$ be the smallest subfield of \mathbb{C} which contains $\sqrt{2}$, i, and \mathbb{Q}. Find a basis for $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}.

2. (a) Let α be a complex number. Suppose that the ring $\mathbb{Q}[\alpha]$ has finite dimension as a vector space over \mathbb{Q}. Prove that $\mathbb{Q}[\alpha]$ is a field. (As always, $\mathbb{Q}[\alpha]$ is the smallest ring which contains \mathbb{Q} and α.)

(b) If $\alpha = e^{2\pi i}$, then what is the dimension of $\mathbb{Q}[\alpha]$ over \mathbb{Q}?

(c) Give an example of a complex number α for which $\mathbb{Q}[\alpha]$ is an infinite dimensional vector space over \mathbb{Q}.

(d) Let $E \subseteq F$ be fields. Suppose that the dimension of F as a vector space over E is a prime integer. Prove that if u is any element of F with $u \notin E$, then $F = E[u]$.

(e) Prove that there aren’t any rings R with $\mathbb{Q} \subset R \subset \mathbb{Q}[\sqrt{2}]$.