Math 547, Exam 3, Spring, 2005

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

I will e-mail your grade to you as soon as I finish grading the exams.
If you want me to leave your exam outside my door (so that you can pick it up before Wednesday's class), then TELL ME and I will do it. The exam will be there as soon as I e-mail your grade to you.

I will post the solutions on my website later today.

1. (6 points) Define maximal ideal.

The ideal I of the ring R is a maximal ideal if $I \subsetneq R$ and whenever J is an ideal of R with $I \subsetneq J$, then $J=R$.

2. (6 points) Define Principal Ideal Domain.

The domain R is a Principal Ideal Domain if every ideal of R has is equal to $\{a r \mid r \in R\}$ for some $a \in R$.
3. (6 points) Define irreducible element.

Let R be a domain. The non-zero, non-unit element r of R is an irreducible element if whenever $r=a b$ for some a and b in R, then either a is a unit or b is a unit.

4. (8 points) Prove that $\mathbb{Q}[x]$ is a Principal Ideal Domain.

Let I be a non-zero ideal in $\mathbb{Q}[x]$. Let f be a non-zero polynomial in I of least degree. We show that $I=(f)$. It is clear that $(f) \subseteq I$. We show that $I \subseteq(f)$. Let g be an arbitrary element of I. Divide f into g and get $g=h f+r$ for polynomials h and r of $\mathbb{Q}[x]$ where either r is the zero polynomial or r has degree less than the degree of f. We see that $r=g-h f \in I$. We chose f to be a non-zero polynomial in I of least degree. It follows that r is the zero polynomial and $g \in(f)$.
5. (8 points) Let $\alpha=e^{\frac{2 \pi i}{9}}$ and let $\phi: \mathbb{Q}[x] \rightarrow \mathbb{C}$ be the function which is given by $\phi(f(x))=f(\alpha)$. All of us know that this function is a ring homomorphism; you do not have to show me a proof. What is the kernel of ϕ ? Prove your answer.

The kernel of ϕ is generated by an irreducible polynomial $g(x) \in \mathbb{Q}[x]$ with $g(\alpha)=0$. The polynomial $x^{9}-1=\left(x^{3}-1\right)\left(x^{6}+x^{3}+1\right)$ is in the kernel of ϕ and $x^{3}-1$ is not in the kernel of ϕ (which is a prime ideal). So, $g(x)=x^{6}+x^{3}+1$
is in the kernel of ϕ. We complete the proof by showing that $g(x)$ is irreducible. We give a tricky argument here. Observe that

$$
\begin{gathered}
g(x)=g((x-1)+1)=((x-1)+1)^{6}+((x-1)+1)^{3}+1 \\
=\left\{\begin{array}{r}
(x-1)^{6}+6(x-1)^{5}+15(x-1)^{4}+20(x-1)^{3}+15(x-1)^{2}+6(x-1)+1 \\
+(x-1)^{3}+3(x-1)^{2}+3(x-1)+1 \\
+1
\end{array}\right. \\
=(x-1)^{6}+6(x-1)^{5}+15(x-1)^{4}+21(x-1)^{3}+18(x-1)^{18}+9(x-1)+3 .
\end{gathered}
$$

So, $g(x)=f(x-1)$, where

$$
f(y)=y^{6}+6(x-1)^{5}+15 y^{4}+21(x-1)^{3}+18 y^{18}+9 y+3
$$

We apply Eisenstein's Criteria to see that $f(y)$ is irreducible. (The prime 3 divides every coefficient of $f(y)$ except the leading coefficient, and 3^{2} does not divide the constant term.) It follows that $g(x)$ is irreducible and the proof is complete.
6. (8 points) Let M be a maximal ideal of the ring R. Prove that $\frac{R}{M}$ is a field.

We need only show that each non-zero element of $\frac{R}{M}$ has a multiplicative inverse in $\frac{R}{M}$. Pick a non-zero element of $\frac{R}{M}$. This element has the form \bar{a} where a is an element of R which is not an element of M. We must show that the element \bar{a} of $\frac{R}{M}$ has an inverse in $\frac{R}{M}$.

Let (M, a) denote the smallest ideal of R which contains M and a. Observe that $(M, a)=\{m+r a \mid m \in M$ and $r \in R\}$. The hypothesis ensures us that $(M, a)=R$. In other words, there exist elements $m \in M$ and $r \in R$ with $1=m+r a$. We conclude that \bar{r} is the inverse of \bar{a} in $\frac{R}{M}$.
7. (8 points) Suppose $K \subseteq F \subseteq E$ are fields with α_{1}, α_{2} a basis of F over K and β_{1}, β_{2} a basis of E over F.
(a) What is a basis for E over K ?
(b) Prove your answer to (a).

The elements $\alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}$ are a basis of E over K.
Span: Take $e \in E$. The elements β_{1}, β_{2} are a basis of E over F; so there exist f_{1} and $f_{2} \in F$ with $e=f_{1} \beta_{1}+f_{2} \beta_{2}$. The elements α_{1}, α_{2} are a basis of F over K, so, there exist $k_{1,1}, k_{1,2}, k_{2,1}, k_{2,2}$ in K, with $f_{1}=k_{1,1} \alpha_{1}+k_{1,2} \alpha_{2}$ and $f_{2}=k_{2,1} \alpha_{1}+k_{2,2} \alpha_{2}$. We now see that

$$
e=f_{1} \beta_{1}+f_{2} \beta_{2}=\left(k_{1,1} \alpha_{1}+k_{1,2} \alpha_{2}\right) \beta_{1}+\left(k_{2,1} \alpha_{1}+k_{2,2} \alpha_{2}\right) \beta_{2} .
$$

Thus,

$$
e=k_{1,1} \alpha_{1} \beta_{1}+k_{1,2} \alpha_{2} \beta_{1}+k_{2,1} \alpha_{1} \beta_{2}+k_{2,2} \alpha_{2} \beta_{2}
$$

We have expressed the arbitrary element e of E as a linear combination of the proposed basis with coefficients from K. In other words, we have shown that $\alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}$ spans E over K.

Linear Independence: Suppose A, B, C, D are elements of K with

$$
0=A \alpha_{1} \beta_{1}+B \alpha_{2} \beta_{1}+C \alpha_{1} \beta_{2}+D \alpha_{2} \beta_{2}
$$

It follows that

$$
0=\left(A \alpha_{1}+B \alpha_{2}\right) \beta_{1}+\left(C \alpha_{1}+D \alpha_{2}\right) \beta_{2} .
$$

Notice that $\left(A \alpha_{1}+B \alpha_{2}\right)$ and $\left(C \alpha_{1}+D \alpha_{2}\right)$ are in F and β_{1}, β_{2} are linearly independent over F. It follows that $A \alpha_{1}+B \alpha_{2}=0$ and $C \alpha_{1}+D \alpha_{2}=0$. However A, B, C, and D are in K and α_{1}, α_{2} are linearly independent over K. It follows that A, B, C, and D are all zero. Thus, $\alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}$ are linearly independent over K.

