Review sheet for Exam 3 – First Installment

Be able to do all of the assigned Homework problems, all of the problems on Exams 1 and 2, and all of the problems on the Review sheets for Exams 1 and 2.

1. Be able to define: prime ideal, maximal ideal, Principal Ideal Domain, irreducible element, Unique Factorization domain.

2. Let \(f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0 \) be a polynomial in \(\mathbb{Z}[x] \). Suppose that \(a \) and \(b \) are relatively prime integers with \(f\left(\frac{a}{b}\right) = 0 \). Prove that \(a \) divides \(c_0 \) in \(\mathbb{Z} \) and \(b \) divides \(c_n \) in \(\mathbb{Z} \).

3. Write \(\frac{1}{\sqrt[15]{2}} \), \(\frac{1}{1 + \sqrt[15]{2}} \), and \(\frac{1}{1 + 2 \sqrt[15]{2} + 3 (\sqrt[15]{2})^2} \) in the form \(a + b \sqrt[15]{2} + c (\sqrt[15]{2})^2 \) with \(a \), \(b \), \(c \) in \(\mathbb{Q} \).

4. Let \(f \) be a polynomial in \(\mathbb{Z}[x] \). Suppose that the coefficients of \(f \) are relatively prime. Prove that \(f \) is irreducible in \(\mathbb{Z}[x] \) if and only if \(f \) is irreducible in \(\mathbb{Q}[x] \).

5. Let \(R \) be a domain. Suppose that there exists a field \(F \) with \(F \subseteq R \) and \(\dim_F R < \infty \). Prove that \(R \) is a field.

6. Give an example of a ring \(R \) and a field \(F \) with \(F \subseteq R \), \(\dim_F R < \infty \), and \(R \) is not a field.

7. Let \(R \) be a domain in which every ideal is finitely generated. Let \(r \) be an element of \(R \) which is not zero and not a unit. Prove that \(r \) is equal to a finite product of irreducible elements.