Math 546 Summer 2002 Final Exam

PRINT Your Name:

There are 20 problems on 10 pages. Each problem is worth 5 points.

I will not grade this exam until Tuesday. Get your course grade from VIP. The grade will be available from VIP as soon as I finish grading the exams.

I will post an answer key on my web site: www.math.sc.edu; click on faculty directory; click on kustin; click on teaching; click on math 546. The key will be posted shortly after the exam is completed.

- 1. Define "group isomorphism". Use complete sentences.
- 2. Define "normal subgroup". Use complete sentences.
- 3. Define "centralizer". Use complete sentences.
- 4. Define "center". Use complete sentences.
- 5. Define "cyclic group". Use complete sentences.
- 6. State and PROVE Lagrange's Theorem.
- 7. PROVE that every subgroup of $(\mathbb{Z}, +)$ is cyclic. I do NOT want you to prove a more general statement. I want you to prove the statement I have written. I want you to use notation which is appropriate to the **additive** group \mathbb{Z} .
- 8. Write down four groups. Each group is to have eight elements. None of the groups is to be isomorphic to any of the others. Explain thoroughly.
- 9. Let \mathbb{R}^{pos} represent the group of positive real numbers under multiplication. Prove that the groups $(\mathbb{R}, +)$ and $(\mathbb{R}^{\text{pos}}, \times)$ are isomorphic.
- 10. Give an example of a subgroup of S_4 which has six elements. Explain.
- 11. Give an example of a subgroup of $(\mathbb{C} \setminus \{0\}, \times)$ which has six elements. Explain.
- 12. How many elements of S_5 have order 2? Explain.
- 13. Express the permutation (6,9)(1,2)(4,9,7)(4,8)(1,2,3) as a product of disjoint cycles. This permutation is an element of the group S_9 .
- 14. Let (G, *) be an abelian group. Let S be the set of all elements g in G which satisfy the equation g * g * g = id. Prove that S is a subgroup of G.
- 15. Let (G, *) be the group $(\mathbb{Z}_3 \times \mathbb{Z}_6, +)$. **LIST** all of the elements of (G, *) which satisfy the equation g * g * g = id. No explanation is needed.
- 16. Is $(\mathbb{Z}_{15}^{\times}, \times)$ a cyclic group? Explain.

- 17. Is $(\mathbb{Z}_2 \times \mathbb{Z}_3, +)$ a cyclic group? Explain.
- 18. The group D_4 has three distinct subgroups of order 4. List the elements of each of these subgroups. (I do not need to see any details.)
- 19. The subgroup $V = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ of the group S_4 is normal. (You do not have to prove this.) Find an element of the factor group $\frac{S_4}{V}$ which has order 3. Explain.
- 20. Let \mathbb{R}^{pos} represent the group of positive real numbers under multiplication and let U be the unit circle. If z is the complex number a + bi, then the modulus |z| of z is equal to $\sqrt{a^2 + b^2}$. Define $\varphi \colon \frac{\mathbb{C} \setminus \{0\}}{U} \to \mathbb{R}^{\text{pos}}$ by $\varphi(Uz) = |z|$, for each coset Uz of $\frac{\mathbb{C} \setminus \{0\}}{U}$. Prove that φ is a group isomorphism.