
Math 546 Summer 2002 Final Exam

There are 20 problems on 10 pages. Each problem is worth 5 points.

1. De�ne \group isomorphism". Use complete sentences.

The function ' from the group G1 to the group G2 is a group

isomorphism if ' is one-to-one, onto, and '(xy) = '(x)'(y) for all x

and y in G1 .

2. De�ne \normal subgroup". Use complete sentences.

The subgroup N of the group G is a normal subgroup if gng
�1 is in N

for every g 2 G and n 2 N .

3. De�ne \centralizer". Use complete sentences.

Let x be an element of the group G . The centralizer of x in G is the

set of elements in G which commute with x .

4. De�ne \center". Use complete sentences.

The center of the group G is the set of elements in G which commute

with every element of G .

5. De�ne \cyclic group". Use complete sentences.

The group G is a cyclic group if there exists an element g in G with

the property that every element of G is equal to g to some power.

6. State and PROVE Lagrange's Theorem.

Statement. If H is a subgroup of the �nite group G , then the order of H

divides the order of G .

Proof. For each element g 2 G , consider the right coset Hg = fhg j h 2 Hg . We

will prove

(a) Every element of G is in exactly one right coset of H in G .

(b) Every right coset of H in G has the same number of elements as H .

Once we have established (a) and (b), then we will know that the number of

elements in G is equal to the number of cosets times the number of elements in

each coset. In other words, jGj = rjHj , where r is the number of cosets, jGj is

the order of G , and jHj is the order of H .

Proof of (a). Let g be an arbitrary element of G . We know that g is in the

right coset Hg . Suppose that g is also in the right coset Hg
0 , for some g

0 2 G .

We will show that the cosets Hg and Hg
0 are equal. The hypothesis g 2 Hg

0

ensures that there exists an element h
0 of H , with

(*) g = h
0
g
0
:

We �rst show that Hg � Hg
0 . Take a typical element hg of Hg , for some

h 2 H . We see from (*) that hg = hh
0
g
0 , and we know that hh

0 is in H , because

H is a group. Thus, hg 2 Hg
0 .

Now we show that Hg
0 � Hg . Take a typical element hg

0 of Hg
0 , for some

h 2 H . We see from (*) that hg
0 = h(h0)�1

g . Once again, we know that h(h0)�1

is an element of H , because H is a group. It follows that hg
0 2 Hg .
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We have shown that Hg � Hg
0 and Hg

0 � Hg . We conclude that Hg
0 = Hg ;

and therefore, every element of G is in exactly one right coset of H in G .

Proof of (b). Let g be an arbitrary element of G . We establish a one-to-one

correspondence between the sets H and Hg . De�ne ' : H! Hg , by '(h) = hg

for each h in H . Observe that ' is onto. Indeed, if x is an arbitrary element

of the coset Hg , then x = hg for some h in H , and ' of this h is equal to

x . It is also clear that ' is one-to-one. Indeed, if h and h
0 are elements of H ,

with '(h) = '(h0) , then hg = h
0
g in the group G . We may multiply by g

�1 to

conclude that h = h
0 .

The one-to-one correspondence ' from H to Hg shows that H and Hg

have the same number of elements.

The proof is complete.

7. PROVE that every subgroup of (Z;+) is cyclic. I do NOT want you to prove

a more general statement. I want you to prove the statement I have written. I

want you to use notation which is appropriate to the additive group Z .

Let H be a subgroup of Z . If H consists of only zero, then H is cyclic.

Henceforth, we assume that H contains more elements than just 0 . As

soon as some integer n is in H , then the inverse of n , which is �n , is also
in H . Consequently, we know that H contains some positive integer.

Let h0 be the smallest positive integer in H . I will prove that H = <h0> .

It is clear that <h0> � H . We need only show that H � <h0> . Let h be

an arbitrary element of H . Divide h0 into h . We see that h0 goes into

h , n times for some integer n , with a remainder r for some integer r ,

with 0 � r � h0 � 1 . That is, h = nh0 + r . It follows that r = h � nh0 ,

which is an element of H because H is a group. On the other hand, r is

non-negative and less than h0 . Our choice of h0 tells us that r must be

zero; hence, h = nh0 and h 2 <h0> . We conclude that H = <h0> ; and

therefore, H is a cyclic group.

8. Write down four groups. Each group is to have eight elements. None of the

groups is to be isomorphic to any of the others. Explain thoroughly.

Consider D4 , Z8 , Z4�Z2 , and Z2�Z2�Z2 . I have listed four groups. The

group D4 is the only non-abelian group on my list, so it is not isomorphic

to any of the other groups. The group Z8 is the only cyclic group on

my list, so it is not isomorphic to any of the other groups. The groups

Z4 � Z2 and Z2 � Z2 � Z2 are not isomorphic because Z4 � Z2 contains

some elements of order 4 , but every element of Z2 � Z2 � Z2 has order 2

or 1 .

9. Let R
pos represent the group of positive real numbers under multiplication.

Prove that the groups (R ;+) and (R pos
;�) are isomorphic.

De�ne ' : R ! R
pos by '(r) = e

r . Notice that

'(r + s) = e
r+s = e

r
e
s = '(r)'(s);

thus, ' is a homomorphism. We next show that ' is onto. Let g be an

arbitrary element of R
pos . Notice that ln g is in R and '(ln g) = e

ln g = g .
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Now we show that f is one-to-one. Take r and s in R with '(r) = '(s) .

That is, er = e
s . Take the natural logarithm of each side to conclude that

r = s .

10. Give an example of a subgroup of S4 which has six elements. Explain.

The group S3 = f(1); (12); (13); (23); (123); (132)g is a subgroup of S4 .

11. Give an example of a subgroup of (C nf0g;�) which has six elements. Explain.

The group U6 = f1; u; u2; u3; u4; u5g , for u = cos 2�
6
+ { sin 2�

6
is a subgroup

of (C n f0g;�) .

12. How many elements of S5 have order 2 ? Explain.

There are
�
5

2

�
= 10 transpositions in S5 . There are 5 times 3 elements

of S5 of the form (ij)(k`) with i; j; k; ` all distinct. Thus S5 has 25

elements of order 2 .

13. Express the permutation (6; 9)(1; 2)(4; 9; 7)(4; 8)(1; 2; 3) as a product of disjoint

cycles. This permutation is an element of the group S9 .

This permutation is equal to (2; 3)(4; 8; 6; 9; 7) :

14. Let (G; �) be an abelian group. Let S be the set of all elements g in G which

satisfy the equation g � g � g = id . Prove that S is a subgroup of G .

We show that S is closed. Take g and h from S . We know that

g � g � g = id and h �h �h = id . We must show that gh is in S . The group

G is abelian; hence,

gh � gh � gh = ggg � hhh = id:

It follows that gh 2 S . Take g 2 S . We must show that the inverse of g

is also in S . The de�ning equation for S tells us that g 's inverse is g �g .
We already have shown that S is closed under � . Thus, g � g , which is

g 's inverse, is also in S . Of course, the identity element of G cubes to

id , so id is in S .

15. Let (G; �) be the group (Z3 � Z6 ;+) . LIST all of the elements of (G; �)
which satisfy the equation g � g � g = id . No explanation is needed.

The elements g of G with g � g � g = id are

(0; 0); (0; 2); (0; 4); (1; 0); (1; 2); (1; 4); (2; 0); (2; 2); (2; 4):

16. Is (Z�15 ;�) a cyclic group? Explain.

NO! The group consists of 8 elements. We see that 24 = 1 , 42 = 1 ,

74 = (72)2 = (4)2 = 1 , 84 = (�7)4 = 1 , (11)2 = (�4)2 = 1 , (13)4 = (�2)4 = 1 ,

(14)2 = (�1)2 = 1 . Every element of this group has order 4 or less.
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17. Is (Z2 � Z3 ;+) a cyclic group? Explain.

YES! The group is generated by (1; 1) .

18. The group D4 has three distinct subgroups of order 4 . List the elements of

each of these subgroups. (I do not need to see any details.)

The subgroups are fid; �; �2; �3g , fid; �; ��2; �2g , and fid; ��; ��2; �3g .

19. The subgroup V = f(1); (1; 2)(3; 4); (1; 3)(2; 4); (1; 4)(2; 3)g of the group S4 is

normal. (You do not have to prove this.) Find an element of the factor group
S4
V

which has order 3 . Explain.

The coset V (123) has order 3 because when I square this coset I get

V (132) , which is not the identity element of the factor group and when I

cube this coset I get V , which is the identity element of the factor group.

20. Let R
pos represent the group of positive real numbers under multiplication and

let U be the unit circle. If z is the complex number a+ b{ , then the modulus

jzj of z is equal to
p
a2 + b2 . De�ne ' :

Cnf0g

U
! R

pos by '(Uz) = jzj , for
each coset Uz of

Cnf0g

U
. Prove that ' is a group isomorphism.

First, we show that ' is a well de�ned function. Suppose that the cosets

Uz and Uw are equal, for some non-zero complex numbers z and w . In

this case, z = uw for some u 2 U . We saw on the second day of class (or

we can calculate again) that

(**) jz1z2j = jz1j � jz2j

for all z1 and z2 in C . In particular, jzj = juwj = juj � jwj = jwj ; so, '

carries both names, Uz and Uw , to the same number jzj in R
pos .

Now we show that ' is a homomorphism. Take z1 and z2 in C n f0g .
Observe, using (**), that

'(Uz1 � Uz2) = '(Uz1z2) = jz1z2j = jz1j � jz2j = '(Uz1) � '(Uz2):

Now we show that ' is onto. Take r 2 R
pos

: Notice that the coset Ur

is in
Cnf0g

U
and '(Ur) = jrj = r .

Finally, we show that ' is one-to-one. Suppose that z1 and z2 are

in C n f0g with '(Uz1) = '(Uz2) . It follows that jz1j = jz2j ; hence,
z1
z2

has modulus 1 , and is equal to an element u of U . We see that

z1 =
z1
z2
z2 = uz2 . We conclude that the cosets Uz1 and Uz2 are equal.


