Math 546 Summer 2002 Final Exam
There are 20 problems on 10 pages. Each problem is worth 5 points.

1. Define "group isomorphism". Use complete sentences.

The function φ from the group G_{1} to the group G_{2} is a group isomorphism if φ is one-to-one, onto, and $\varphi(x y)=\varphi(x) \varphi(y)$ for all x and y in G_{1}.
2. Define "normal subgroup". Use complete sentences.

The subgroup N of the group G is a normal subgroup if $g n g^{-1}$ is in N for every $g \in G$ and $n \in N$.
3. Define "centralizer". Use complete sentences.

Let x be an element of the group G. The centralizer of x in G is the set of elements in G which commute with x.
4. Define "center". Use complete sentences.

The center of the group G is the set of elements in G which commute with every element of G.
5. Define "cyclic group". Use complete sentences.

The group G is a cyclic group if there exists an element g in G with the property that every element of G is equal to g to some power.
6. State and PROVE Lagrange's Theorem.

Statement. If H is a subgroup of the finite group G, then the order of H divides the order of G.
Proof. For each element $g \in G$, consider the right coset $H g=\{h g \mid h \in H\}$. We will prove
(a) Every element of G is in exactly one right coset of H in G.
(b) Every right coset of H in G has the same number of elements as H.

Once we have established (a) and (b), then we will know that the number of elements in G is equal to the number of cosets times the number of elements in each coset. In other words, $|G|=r|H|$, where r is the number of cosets, $|G|$ is the order of G, and $|H|$ is the order of H.
Proof of (a). Let g be an arbitrary element of G. We know that g is in the right coset $H g$. Suppose that g is also in the right coset $H g^{\prime}$, for some $g^{\prime} \in G$. We will show that the cosets $H g$ and $H g^{\prime}$ are equal. The hypothesis $g \in H g^{\prime}$ ensures that there exists an element h^{\prime} of H, with

$$
\begin{equation*}
g=h^{\prime} g^{\prime} \tag{*}
\end{equation*}
$$

We first show that $H g \subseteq H g^{\prime}$. Take a typical element $h g$ of $H g$, for some $h \in H$. We see from $\left(^{*}\right)$ that $h g=h h^{\prime} g^{\prime}$, and we know that $h h^{\prime}$ is in H, because H is a group. Thus, $h g \in H g^{\prime}$.

Now we show that $H g^{\prime} \subseteq H g$. Take a typical element $h g^{\prime}$ of $H g^{\prime}$, for some $h \in H$. We see from $\left(^{*}\right)$ that $h g^{\prime}=h\left(h^{\prime}\right)^{-1} g$. Once again, we know that $h\left(h^{\prime}\right)^{-1}$ is an element of H, because H is a group. It follows that $h g^{\prime} \in H g$.

We have shown that $H g \subseteq H g^{\prime}$ and $H g^{\prime} \subseteq H g$. We conclude that $H g^{\prime}=H g$; and therefore, every element of G is in exactly one right coset of H in G.
Proof of (b). Let g be an arbitrary element of G. We establish a one-to-one correspondence between the sets H and $H g$. Define $\varphi: \mathrm{H} \rightarrow H g$, by $\varphi(h)=h g$ for each h in H. Observe that φ is onto. Indeed, if x is an arbitrary element of the coset $H g$, then $x=h g$ for some h in H, and φ of this h is equal to x. It is also clear that φ is one-to-one. Indeed, if h and h^{\prime} are elements of H, with $\varphi(h)=\varphi\left(h^{\prime}\right)$, then $h g=h^{\prime} g$ in the group G. We may multiply by g^{-1} to conclude that $h=h^{\prime}$.

The one-to-one correspondence φ from H to $H g$ shows that H and $H g$ have the same number of elements.

The proof is complete.
7. PROVE that every subgroup of $(\mathbb{Z},+)$ is cyclic. I do NOT want you to prove a more general statement. I want you to prove the statement I have written. I want you to use notation which is appropriate to the additive group \mathbb{Z}.
Let H be a subgroup of \mathbb{Z}. If H consists of only zero, then H is cyclic. Henceforth, we assume that H contains more elements than just 0 . As soon as some integer n is in H, then the inverse of n, which is $-n$, is also in H. Consequently, we know that H contains some positive integer. Let h_{0} be the smallest positive integer in H. I will prove that $H=<h_{0}>$. It is clear that $<h_{0}>\subseteq H$. We need only show that $H \subseteq<h_{0}>$. Let h be an arbitrary element of H. Divide h_{0} into h. We see that h_{0} goes into h, n times for some integer n, with a remainder r for some integer r, with $0 \leq r \leq h_{0}-1$. That is, $h=n h_{0}+r$. It follows that $r=h-n h_{0}$, which is an element of H because H is a group. On the other hand, r is non-negative and less than h_{0}. Our choice of h_{0} tells us that r must be zero; hence, $h=n h_{0}$ and $h \in\left\langle h_{0}\right\rangle$. We conclude that $H=\left\langle h_{0}\right\rangle$; and therefore, H is a cyclic group.
8. Write down four groups. Each group is to have eight elements. None of the groups is to be isomorphic to any of the others. Explain thoroughly.
Consider $D_{4}, \mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. I have listed four groups. The group D_{4} is the only non-abelian group on my list, so it is not isomorphic to any of the other groups. The group \mathbb{Z}_{8} is the only cyclic group on my list, so it is not isomorphic to any of the other groups. The groups $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic because $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ contains some elements of order 4 , but every element of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has order 2 or 1 .
9. Let $\mathbb{R}^{\text {pos }}$ represent the group of positive real numbers under multiplication. Prove that the groups $(\mathbb{R},+)$ and ($\left.\mathbb{R}^{\text {pos }}, \times\right)$ are isomorphic.
Define $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{\text {pos }}$ by $\varphi(r)=e^{r}$. Notice that

$$
\varphi(r+s)=e^{r+s}=e^{r} e^{s}=\varphi(r) \varphi(s) ;
$$

thus, φ is a homomorphism. We next show that φ is onto. Let g be an arbitrary element of $\mathbb{R}^{\text {pos }}$. Notice that $\ln g$ is in \mathbb{R} and $\varphi(\ln g)=e^{\ln g}=g$.

Now we show that f is one-to-one. Take r and s in \mathbb{R} with $\varphi(r)=\varphi(s)$. That is, $e^{r}=e^{s}$. Take the natural logarithm of each side to conclude that $r=s$.
10. Give an example of a subgroup of S_{4} which has six elements. Explain. The group $S_{3}=\{(1),(12),(13),(23),(123),(132)\}$ is a subgroup of S_{4}.
11. Give an example of a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ which has six elements. Explain. The group $U_{6}=\left\{1, u, u^{2}, u^{3}, u^{4}, u^{5}\right\}$, for $u=\cos \frac{2 \pi}{6}+\imath \sin \frac{2 \pi}{6}$ is a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$.
12. How many elements of S_{5} have order 2? Explain.

There are $\binom{5}{2}=10$ transpositions in S_{5}. There are 5 times 3 elements of S_{5} of the form $(i j)(k \ell)$ with i, j, k, ℓ all distinct. Thus S_{5} has 25 elements of order 2 .
13. Express the permutation $(6,9)(1,2)(4,9,7)(4,8)(1,2,3)$ as a product of disjoint cycles. This permutation is an element of the group S_{9}.
This permutation is equal to $(2,3)(4,8,6,9,7)$.
14. Let $(G, *)$ be an abelian group. Let S be the set of all elements g in G which satisfy the equation $g * g * g=\mathrm{id}$. Prove that S is a subgroup of G.
We show that S is closed. Take g and h from S. We know that $g * g * g=\mathbf{i d}$ and $h * h * h=\mathbf{i d}$. We must show that $g h$ is in S. The group G is abelian; hence,

$$
g h * g h * g h=g g g * h h h=\mathbf{i d} .
$$

It follows that $g h \in S$. Take $g \in S$. We must show that the inverse of g is also in S. The defining equation for S tells us that g 's inverse is $g * g$. We already have shown that S is closed under $*$. Thus, $g * g$, which is g 's inverse, is also in S. Of course, the identity element of G cubes to id, so id is in S.
15. Let $(G, *)$ be the group $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{6},+\right)$. LIST all of the elements of $(G, *)$ which satisfy the equation $g * g * g=\mathrm{id}$. No explanation is needed.
The elements g of G with $g * g * g=$ id are

$$
(0,0),(0,2),(0,4),(1,0),(1,2),(1,4),(2,0),(2,2),(2,4)
$$

16. Is $\left(\mathbb{Z}_{15}^{\times}, \times\right)$a cyclic group? Explain.

NO! The group consists of 8 elements. We see that $2^{4}=1,4^{2}=1$, $7^{4}=\left(7^{2}\right)^{2}=(4)^{2}=1,8^{4}=(-7)^{4}=1,(11)^{2}=(-4)^{2}=1,(13)^{4}=(-2)^{4}=1$, $(14)^{2}=(-1)^{2}=1$. Every element of this group has order 4 or less.
17. Is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3},+\right)$ a cyclic group? Explain.

YES! The group is generated by $(1,1)$.
18. The group D_{4} has three distinct subgroups of order 4. List the elements of each of these subgroups. (I do not need to see any details.)
The subgroups are $\left\{\mathbf{i d}, \rho, \rho^{2}, \rho^{3}\right\},\left\{\mathbf{i d}, \sigma, \sigma \rho^{2}, \rho^{2}\right\}$, and $\left\{\mathbf{i d}, \sigma \rho, \sigma \rho^{2}, \rho^{3}\right\}$.
19. The subgroup $V=\{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ of the group S_{4} is normal. (You do not have to prove this.) Find an element of the factor group $\frac{S_{4}}{V}$ which has order 3 . Explain.
The coset $V(123)$ has order 3 because when I square this coset I get $V(132)$, which is not the identity element of the factor group and when I cube this coset I get V, which is the identity element of the factor group.

20 . Let $\mathbb{R}^{\text {pos }}$ represent the group of positive real numbers under multiplication and let U be the unit circle. If z is the complex number $a+b r$, then the modulus $|z|$ of z is equal to $\sqrt{a^{2}+b^{2}}$. Define $\varphi: \frac{\mathbb{C} \backslash\{0\}}{U} \rightarrow \mathbb{R}^{\text {pos }}$ by $\varphi(U z)=|z|$, for each coset $U z$ of $\frac{\mathbb{C} \backslash\{0\}}{U}$. Prove that φ is a group isomorphism.
First, we show that φ is a well defined function. Suppose that the cosets $U z$ and $U w$ are equal, for some non-zero complex numbers z and w. In this case, $z=u w$ for some $u \in U$. We saw on the second day of class (or we can calculate again) that

$$
\begin{equation*}
\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \tag{**}
\end{equation*}
$$

for all z_{1} and z_{2} in \mathbb{C}. In particular, $|z|=|u w|=|u| \cdot|w|=|w|$; so, φ carries both names, $U z$ and $U w$, to the same number $|z|$ in $\mathbb{R}^{\text {pos }}$.

Now we show that φ is a homomorphism. Take z_{1} and z_{2} in $\mathbb{C} \backslash\{0\}$. Observe, using (**), that

$$
\varphi\left(U z_{1} \cdot U z_{2}\right)=\varphi\left(U z_{1} z_{2}\right)=\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|=\varphi\left(U z_{1}\right) \cdot \varphi\left(U z_{2}\right)
$$

Now we show that φ is onto. Take $r \in \mathbb{R}^{\text {pos }}$. Notice that the coset $U r$ is in $\frac{\mathbb{C} \backslash\{0\}}{U}$ and $\varphi(U r)=|r|=r$.

Finally, we show that φ is one-to-one. Suppose that z_{1} and z_{2} are in $\mathbb{C} \backslash\{0\}$ with $\varphi\left(U z_{1}\right)=\varphi\left(U z_{2}\right)$. It follows that $\left|z_{1}\right|=\left|z_{2}\right|$; hence, $\frac{z_{1}}{z_{2}}$ has modulus 1 , and is equal to an element u of U. We see that $z_{1}=\frac{z_{1}}{z_{2}} z_{2}=u z_{2}$. We conclude that the cosets $U z_{1}$ and $U z_{2}$ are equal.

