Math 546, Exam 1, Summer 2002

PRINT Your Name: ___________________________

There are 8 problems on 5 pages. Problems 1 and 2 are worth 7 points each. Each of the other problems is worth 6 points.

1. Define “group”. Use complete sentences.

2. Define “subgroup”. Use complete sentences.

3. Define \(\star \) on \(\mathbb{Q} \setminus \{0\} \) by \(a \star b = \frac{a}{b} \). Is \((\mathbb{Q} \setminus \{0\}, \star) \) a group? Why or why not?

4. Recall that \(\text{GL}_2(\mathbb{R}) \) represents the group of invertible \(2 \times 2 \) matrices with real number entries. The operation in \(\text{GL}_2(\mathbb{R}) \) is matrix multiplication. The matrix

\[
A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}
\]

is an element of \(\text{GL}_2(\mathbb{R}) \). What is \(A \)'s inverse?

5. Let \(T = \mathbb{R} \setminus \{-2\} \). Define \(\star \) on \(T \) by \(a \star b = ab + 2a + 2b + 2 \). Proof that \((T, \star) \) is a group.

6. Recall that \(D_3 \) is the smallest subgroup of the group of rigid motions which contains \(\rho \) and \(\sigma \), where \(\rho \) is rotation counter clockwise by 120° fixing the origin and \(\sigma \) is reflection of the \(xy \) plane across the \(x \) axis. List 4 subgroups of \(D_3 \) in addition to \(D_3 \) and \{id\}. (I do not need to see any details.)

7. The Dihedral group \(D_4 \) consists of 8 elements \(\text{id} \), \(\rho \), \(\rho^2 \), \(\rho^3 \), \(\sigma \), \(\sigma \rho \), \(\sigma \rho^2 \), and \(\sigma \rho^3 \). In class we calculated that \(\rho \sigma = \sigma \rho^3 \), \(\rho^4 = \text{id} \), and \(\sigma^2 = \text{id} \). Express \(\rho^2 \sigma \rho \sigma \) in the form \(\sigma^i \rho^j \) for some integers \(i \) and \(j \), with \(0 \leq i \leq 1 \), and \(0 \leq j \leq 3 \).

8. Consider \(L = \{ n \in \mathbb{Z} \mid n \leq 7 \} \). For \(a \) and \(b \) in \(L \), define \(a \star b = \min\{a, b\} \). Does \((L, \star) \) have an identity element? If yes, what is it and why does it work? If no, why not? (I know that \((L, \star) \) is not a group. You do not have to show that, but you do have to answer my question.)