Math 546, Exam 4, Summer, 2001

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 5 points.
Neither your exam, nor your score, will not be available until class on Monday.

1. Are the groups $\left(\mathbb{Z}_{15}^{\times}, \times\right)$and $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$ isomorphic? Explain.
2. Are the groups $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3},+\right)$ and $\left(U_{6}, \times\right)$ isomorphic. Explain.
3. How many permutations in S_{7} have order 6 ?
4. Write the cycle (12345) as a product of transpositions.
5. Consider $\varphi: \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3}$, given by $\varphi\left([a]_{9}\right)=[a]_{3}$. Is φ a FUNCTION? Explain.
6. Suppose that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. Prove $[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}$.
7. Let $G=\mathbb{Z}_{6} \times \mathbb{Z}_{9}$. LIST the elements of the set $\{g \in G \mid g+g+g=0\}$. No explanation is needed.
8. True or False. If true prove it. If false, give a counterexample. If G is an abelian group and $H=\left\{x^{3} \mid x \in G\right\}$, then H is a subgroup of G.
9. Let G be the group of non-zero complex numbers under multiplication. Let G^{\prime} be the group of non-zero 2×2 matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$, with real entries, under multiplication. Consider the function $\varphi: G \rightarrow G^{\prime}$, which is given by $\varphi(a+b i)=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$. Prove that φ is a group isomorphism.
10. Let $T=\mathbb{R} \backslash\{1\}$. Define $*$ on T by $a * b=a b-a-b+2$. Prove that $(T, *)$ is isomorphic to $(\mathbb{R} \backslash\{0\}, \times)$.
