Homework October 1, 2004

1. Suppose that H is a subgroup of the group G and ghg^{-1} is in H for all $g \in G$ and $h \in H$.
 (a) Let h_1 be an arbitrary element of H and g be an arbitrary element of G.
 Prove that there exists an element h of H with $h_1 = ghg^{-1}$. (It is possible
 to give a proof which works for infinite groups as well as finite groups.)
 (b) Let a, b, c, and d be elements of G with $aH = bH$ and $cH = dH$. Prove
 that $acH = bdH$. (This is only a tiny extension of homework number 3 from
 September 29.)
 (c) Let S be the set of cosets $S = \{aH \mid a \in G\}$ of H in G. Part (b) shows that
 the operation on S given by $(aH) * (bH) = abH$ is a well-defined function.
 Prove that S is a group. (If you are looking for this somewhere, S is usually
 written as G/H and S is called the “quotient group of G mod H”, or the
 “factor group of G mod H”. BY THE WAY: S is not a subset of anything;
 we have to verify all of the axioms for group. Fortunately, this is very easy.)

2. (a) If G is an abelian group and H is a subgroup of G, then prove that ghg^{-1}
 is in H for all $g \in G$ and $h \in H$.
 (b) If G is a finite group with $2n$ elements and H is a subgroup of G with n
 elements, then prove that ghg^{-1} is in H for all $g \in G$ and $h \in H$.
 (b) If G is a group and H is a subgroup of the center of G, then prove that
 ghg^{-1} is in H for all $g \in G$ and $h \in H$.

3. Work out some examples of G/H as described in problem 1c.
 (a) Let $G = D_4$ and $H = <\rho>$. Problem 2c tells us that it is legal to create
 G/H. What is this group? How many elements does it have? What is the
 multiplication table? Do you believe that this multiplication makes sense?
 (b) Let $G = D_4$ and $H = <\rho^2>$. Problem 2b tells us that it is legal to create
 G/H. What is this group? How many elements does it have? What is the
 multiplication table? Do you believe that this multiplication makes sense?
 (c) Let $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$. Problem 2a tells us that it is legal to create G/H.
 What is this group? How many elements does it have? What is the addition table?
 Do you believe that this addition makes sense? (Notice that the elements of
 this G/H look like $a+H$ because the operation in G is called + . Furthermore,
 the operation in G/H is also called + ; that is, $(a + H) + (b + H) = a + b + H$.)