Math 546, Exam 4, Spring, 2001
PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points.

1. Define group isomorphism.
2. Let $H$ be a non-zero subgroup of $(\mathbb{Z},+)$. Prove that $H$ is a cyclic group. (I want you to write down a complete proof. "We did this in class" is not a satisfactory answer.)
3. Let $m$ and $n$ be positive integers. Let $H$ be the set of all linear combinations $a n+b m$, where $a$ and $b$ are integers. It can be shown that there exists a positive element $h \in H$, so that every element of $H$ is a multiple of $h$. PROVE that $h$ is the greatest common divisor of $m$ and $n$. (I am not asking you to prove the existence of $h$. I am saying, "Suppose $h$ exists. Now prove that $h$ is the g.c.d.".)
4. Give an example of a group $G$ and elements $a$ and $b$ in $G$ of finite order with the order of $a b$ not equal to the order of $a$ times the order of $b$.
5. Let $a$ and $b$ be elements of finite order in a group $G$. LIST two hypothesis so that if $a$ and $b$ satisfy these hypotheses, then the order of $a b$ is equal to the order of $a$ times the order of $b$. PROVE the result.
6. How many permutations in $S_{7}$ have order 3? Explain your answer.
7. Let $\mathbb{Z}$ be the group of integers under addition and let $H$ be the subgroup of even integers. Are the groups $\mathbb{Z}$ and $H$ isomorphic? Explain your answer.
8. Are the groups $\mathbb{Z}_{15}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$ isomorphic? (The operation in each of the groups $\mathbb{Z}_{15}, \mathbb{Z}_{3}$, and $\mathbb{Z}_{5}$ is addition.) Explain your answer.
9. Are the groups $\mathbb{Z}_{8}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ isomorphic? (The operation in each of the groups $\mathbb{Z}_{8}, \mathbb{Z}_{2}$, and $\mathbb{Z}_{4}$ is addition.) Explain your answer.

10 . Which of the groups $(\mathbb{C} \backslash\{0\}, \times),(\mathbb{R},+),(\mathbb{R} \backslash\{0\}, \times)$, and $\left(\mathbb{R}^{\text {pos }}, \times\right)$ are isomorphic? (Be sure to examine each pair of groups. I use $\mathbb{R}^{\text {pos }}$ to represent the set of positive real numbers.) Explain your answer.

