Math 546, Exam 2, Spring, 2001

PRINT Your Name:

There are 7 problems (10 parts) on 5 pages. Each **part** is worth 10 points.

- 1. State Lagrange's Theorem.
- 2. Define "cyclic group".
- 3. Let G be a group and $a \in G$.
 - (a) Define "the centralizer of a".
 - (b) Prove that the centralizer of a is a subgroup of G.
 - (c) Let $G = D_4$ and $a = \rho$. Find the centralizer of a.

4.

- (a) Give an example of a cyclic subgroup of D_4 of order 4. No proof is necessary.
- (b) Give an example of a subgroup of D_4 of order 4 which is not cyclic. No proof is necessary.
- 5. Let $U_8 = \{z \in \mathbb{C} \mid z^8 = 1\}$. Which elements in U_8 have the form x^3 for some $x \in U_8$? Explain your answer.
- 6. Let $G = D_4$ and $H = \{id, \sigma\rho^3\}$. Find 4 elements x_1, x_2, x_3, x_4 of G so that G is the disjoint union $[x_1] \cup [x_2] \cup [x_3] \cup [x_4]$, where $[x] = \{y \in G \mid xy^{-1} \in H\}$. Identify x_1, x_2, x_3, x_4 and show the full set $[x_i]$ for each i.
- 7. True or False (If true, then prove it. If false, then give a counterexample.) If every proper subgroup of the group G is abelian, then G is abelian. (Recall that the subgroup H is G is a *proper* subgroup if $H \neq G$.)